Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments (pre-processed), previously published observation-based datasets, and code to reproduce figures from these datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Griffies, Stephen M; Beadling, Rebecca L; Krasting, John P; Hurlin, William J
Abstract:
This output was produced in coordination with the Southern Ocean Freshwater release model experiments Initiative (SOFIA) and is the Tier 1 experiment where freshwater is delivered in a spatially and temporally uniform pattern at the surface of the ocean at sea surface temperature in a 1-degree latitude band extending from Antarctica’s coastline. The total additional freshwater flux imposed as a monthly freshwater flux entering the ocean is 0.1 Sv. Users are referred to the methods section of Beadling et al. (2022) for additional details on the meltwater implementation in CM4 and ESM4. The datasets in this collection contain model output from the coupled global climate model, CM4, and Earth System Model, ESM4, both developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). The ocean_monthly_z and ocean_annual_z output are provided as z depth levels in meters as opposed to the models native hybrid vertical ocean coordinate which consists of z* (quasi-geopotential) coordinates in the upper ocean through the mixed layer, transitioning to isopycnal (referenced to 2000 dbar) in the ocean interior. Please see README for further details.
Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
Abstract:
A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
In this publication we provide the LAMMPS example files to reproduce simulations for the manuscript "A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water"
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.