Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Muniz, Maria Carolina; Gartner III, Thomas E.; Riera, Marc; Knight, Christopher; Yue, Shuwen; Paesani, Francesco; Panagiotopoulos, Athanassios Z.
Abstract:
This dataset contains all data (including input files, simulation trajectories as well as other data files and analysis scripts) related to the publication "Vapor-liquid equilibrium of water with the MB-pol many-body potential" by Muniz et al. in preparation (2021). In this work, we assessed the performance of the MB-pol many-body potential with respect to water's vapor-liquid equilibrium properties. Through the use of direct coexistence molecular dynamics, we calculated properties such as coexistence densities, surface tension, vapor pressures and enthalpy of vaporization. We found that MB-pol is able to predict these properties in good agreement with experimental data. The results attest to the chemical accuracy of MB-pol and its large range of application across water's phase diagram.
Pan, Da; Gelfand, Ilya; Tao, Lei; Abraha, Michael; Sun, Kang; Guo, Xuehui; Chen, Jiquan; Robertson, G. Philip; Zondlo, Mark A.
Abstract:
This dataset contains spectroscopic simulations, experimental results for the 2202 cm-1 N2O absorption line, and N2O flux measurements shown in "A New Open-path Eddy Covariance Method for N2O and Other Trace Gases that Minimizes Temperature Corrections" by Da Pan, Ilya Gelfand, Lei Tao, Michael Abraha, Kang Sun, Xuehui Guo, Jiquan Chen, G. Philip Robertson, and Mark A. Zondlo. The HITRAN Application Programming Interface (HAPI) with HITRAN 2016 was used for spectroscopic simulations. Experiments were conducted to quantify H2O-broadened half-width at half maximum and validate spectroscopic simulations. N2O flux was measured with both eddy covariance and static chamber methods.
China is the world's largest carbon emitter and suffers from severe air pollution. About one million deaths in China were attributable to air pollution in 2017. Alternative energy vehicles (AEVs), e.g. electric, hydrogen fuel cell, and natural gas vehicles, can help achieve both carbon emission mitigation and air quality improvement. However, climate, air quality and health co-benefit of AEVs powered by deeply decarbonized electricity generation remain poorly quantified. Here, we conduct a quantitative integrated assessment of the air quality, health, carbon emission mitigation and economic benefits of AEV deployment as the electricity grid decarbonizes in China. We find population-weighted annual PM2.5 and summer O3 concentration can decrease as large as 5.7μgm−3 and 4.9ppb. Annual avoided premature mortalities and years of life lost resulting from improved ambient air pollution can be as large as ~329,000 persons and ~1,611,000 years. We thus show that maximizing climate, air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.