The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
This dataset contains all the model output used to generate the figures and data reported in the article "Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone". The data was generated during spring 2015 using the a modified version of the Ecosystem Demography model version 2, provided as a supplement accompanying the article. The data was generated using the computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. The dataset contains a pdf Readme file which explains in detail how the data can be used. Users are recommended to go through this file before using the data.
These GROMACS trajectories show the existence of a critical point in deeply supercooled WAIL water. Also included is the code necessary to reproduce the figures in the corresponding paper from these trajectories. From this data the critical temperature, pressure, and density of the model can be found, and critical fluctuations in the deeply supercooled liquid can be directly observed (in a computer-simulation sense).
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Current sheet and open field lines with footpoints near the edge of the polar cap. The magnetic axis is inclined relative to the rotation axis by 60 degrees. Red
field lines originate on the north polar cap and green field lines in the right panel originate on the south polar cap. Purple and grey colors indicate positive and negative net
local charge density in the current sheet, which is shown between 1.2-2 light cylinder radii.
Current sheet and open field lines with footpoints near the edge of the polar cap. The magnetic axis is inclined relative to the rotation axis by 90 degrees. Red field lines originate on the north polar cap and green field lines in the right panel originate on the south polar cap. Purple and grey colors indicate positive and negative net local charge density in the current sheet, which is shown between 1.2-2 light cylinder radii.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moments of both
stars aligned with the rotation axis. The stars are not spinning, i.e., R_{LC,∗} = ∞.
Fields are by and large confined
to the half of the magnetosphere closer to their source star.
This movie shows the corotating field pattern as the orbit progresses.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moments of both
stars aligned with the rotation axis. The stars are spinning
rapidly at ∼ ms periods, with R_{LC,∗}/R_∗ = 2.7. Stellar spin
winds fields backwards toroidally, and they can propagate to
the far side of the magnetosphere closer to the opposing star.
This movie shows the corotating field pattern as the orbit progresses.