Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; Mueller, D.; Myers, C. E.; Guttenfelder, W.; Menard, J. E.; Sabbagh, S. A.; Scotti, F.; Bedoya, F.; Bell, R. E.; Berkery, J. W.; Diallo, A.; Ferraro, N.; Jaworski, M. A.; Kaye, S. M.; LeBlanc, B. P.; Ono, M.; Park, J. -K.; Podesta, M.; Raman, R.; Soukhanovskii, V.
Bhattacharjee, Tapomoy; Amchin, Daniel; Alert, Ricard; Ott, Jenna; Datta, Sujit
Abstract:
Collective migration -- the directed, coordinated motion of many self-propelled agents -- is a fascinating emergent behavior exhibited by active matter that has key functional implications for biological systems. Extensive studies have elucidated the different ways in which this phenomenon may arise. Nevertheless, how collective migration can persist when a population is confronted with perturbations, which inevitably arise in complex settings, is poorly understood. Here, by combining experiments and simulations, we describe a mechanism by which collectively migrating populations smooth out large-scale perturbations in their overall morphology, enabling their constituents to continue to migrate together. We focus on the canonical example of chemotactic migration of Escherichia coli, in which fronts of cells move via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We identify two distinct modes in which chemotaxis influences the morphology of the population: cells in different locations along a front migrate at different velocities due to spatial variations in (i) the local nutrient gradient and in (ii) the ability of cells to sense and respond to the local nutrient gradient. While the first mode is destabilizing, the second mode is stabilizing and dominates, ultimately driving smoothing of the overall population and enabling continued collective migration. This process is autonomous, arising without any external intervention; instead, it is a population-scale consequence of the manner in which individual cells transduce external signals. Our findings thus provide insights to predict, and potentially control, the collective migration and morphology of cell populations and diverse other forms of active matter.
Canal, G. P.; Ferraro, N. M.; Evans, T. E.; Osborne, T. H.; Menard, J. E.; Ahn, J. -W.; Maingi, R.; Wingen, A.; Ciro, D.; Frerichs, H.; Schmitz, O.; Soukhanovskii, V.; Waters, I.; Sabbagh, S. A.
Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
Abstract:
Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
Derrida’s Margins <derridas-margins.princeton.edu> is a website and online research tool for annotations from the Library of Jacques Derrida, housed at Princeton University Library (PUL) <library.princeton.edu>. Jacques Derrida is one of the major figures of twentieth-century thought, and his library--which bears the traces of decades of close reading--represents a major intellectual archive. This project focused on annotations related to Derrida’s landmark 1967 work De la grammatologie (Of Grammatology).
Derrida’s Margins <derridas-margins.princeton.edu> is a website and online research tool for annotations from the Library of Jacques Derrida, housed at Princeton University Library (PUL) <library.princeton.edu>. Jacques Derrida is one of the major figures of twentieth-century thought, and his library--which bears the traces of decades of close reading--represents a major intellectual archive. This project focused on annotations related to Derrida’s landmark 1967 work De la grammatologie (Of Grammatology).
Choi, W.; Poli, F. M.; Li, M. H.; Baek, S. G.; Gorelenkova, M.; Ding, B. J.; Gong, X. Z.; Chan, A.; Duan, Y. M.; Hu, J. H.; Lian, H.; Lin, S. Y.; Liu, H. Q.; Qian, J. P.; Wallace, G.; Wang, Y. M.; Zang, Q.; Zhao, H. L.
This item contains two files. A multi-layer perceptron (MLP) neural network is built using the MATLAB Deep Network Designer (.m file). It imports a quantum cascade laser (QCL) dataset and splits it into 70% training, 15% validation, and 15% testing subsets. The network consists of an input layer, three hidden layers (each having a normalization and activation layer), and a regression output layer. All of the layers are fully connected, and the root-mean-square error (RMSE) is used to evaluate the accuracy of the network. An algorithm is trained on the [-2, +3] QCL dataset using 50 neurons, ReLU activation function, solver Adam, 0.001 learning rate, over 150 epochs, and is saved to be used in the prediction of figure of merit values for QCL designs (.mat file).
This item contains two files. A multi-layer perceptron (MLP) neural network is built using the MATLAB Deep Network Designer (.m file). It imports a quantum cascade laser (QCL) dataset and splits it into 70% training, 15% validation, and 15% testing subsets. The network consists of an input layer, three hidden layers (each having a normalization and activation layer), and a regression output layer. All of the layers are fully connected, and the root-mean-square error (RMSE) is used to evaluate the accuracy of the network. An algorithm is trained on the [-5, +20] QCL dataset using 50 neurons, ReLU activation function, solver Adam, 0.001 learning rate, over 50 epochs, and is saved to be used in the prediction of figure of merit values for QCL designs (.mat file).
A code to identify the laser transition for a quantum cascade laser design based on the figure of merit. Variables such as the number of layers, and layer thicknesses, as well the applied electric field, materials composition, number of period repetitions, and layer tolerance ranges to generate random designs are specified. A folder containing a .csv file with all electronic state-pair transitions collected, a .png file of the bandstructure and the laser transition chosen (in red), for all electric field iterations, and a summary .csv file of all these laser transitions for a structure at each electric field is generated by the code. To use, first install ErwinJr2 on your computer. Then locate the "ErwinJr2" folder and copy these 6 files into that directory, overwriting the previous five files (Material.py, QCLayers.py, QCPlotter.py, QuantumTab.py, rFittings.py). Lastly, run the "acej-qcl-layer_10-lwrandom-v23.py" script using Python.
The "summary-fomstar-3lu-eVmiddle-19.csv" file is generated after running the laser transition code, with all of the data collected for one structure at many electric fields. Running the script various times will generate random structures with the same electric field range. Joining these "summary" .csv files makes a QCL dataset.
Fredrickson, E. D.; Belova, E. V.; Battaglia, D. J.; Bell, R. E.; Crocker, N. A.; Darrow, D. S.; Diallo, A.; Gerhardt, S. P.; Gorelenkov, N. N.; LeBlanc, B. P.; Podesta, M.
This dataset is created for the paper titled 'Co-benefits of Transport Demand Reductions from Compact Urban Development in Chinese Cities' and published on Nature Sustainability. We construct 6 scenarios of compact urban development, alternative energy vehicle deployment, and power decarbonization to explore the co-benefits of transport demand reductions via compact urban development for carbon emissions, energy use, air quality, and human health in China in 2050. This dataset provides the following gridded information for the scenarios: (1) monthly mean surface PM2.5 concentrations from the WRF-Chem model; (2) annual PM2.5-related premature deaths calculated by the GEMM model; (3) 2015 population in China; (4) mask for provinces in China; (5) longitude and latitude of each grid center.