Geyman, Emily C.; Wu, Ziman; Nadeau, Matthew D.; Edmonsond, Stacey; Turner, Andrew; Purkis, Sam J.; Howes, Bolton; Dyer, Blake; Ahm, Anne-Sofie C.; Yao, Nan; Deutsch, Curtis A.; Higgins, John A.; Stolper, Daniel A.; Maloof, Adam C.
Abstract:
Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. In this contribution, we present new geochemical data that bear on this problem, including stable isotope and minor and trace element data from carbonate sources in the modern Bahamas such as ooids, corals, foraminifera, and green algae.
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
In our study, we compare the three dimensional (3D) morphologic characteristics of Earth's first reef-building animals (archaeocyath sponges) with those of modern, photosynthetic corals. Within this repository are the 3D image data products for both groups of animals. The archaeocyath images were produced through serial grinding and imaging with the Grinding, Imaging, and Reconstruction Instrument at Princeton University. The images in this repository are the downsampled data products used in our study, and the full resolution (>2TB) image stacks are available upon request from the author. For the coral image data, the computed tomography (CT) images of all samples are included at full resolution. Also included in this repository are the manual and automated outline coordinates of the archaeocyath and coral branches, which can be directly used for morphological study.
Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively. Included in this repository are the instructions and corresponding code required to build the dataset and run the analysis in the manuscript.
The carbon isotopic (δ13C) composition of shallow-water carbonates often is interpreted to reflect the δ13C of the global ocean and is used as a proxy for changes in the global carbon cycle. However, local platform processes, in addition to meteoric and marine diagenesis, may decouple carbonate δ13C from that of the global ocean. To shed light on the extent to which changing sediment grain composition may produce δ13C shifts in the stratigraphic record, we present new δ13C measurements of benthic foraminifera, solitary corals, calcifying green algae, ooids, coated grains, and lime mud from the modern Great Bahama Bank (GBB). This survey of a modern carbonate environment reveals δ13C variability comparable to the largest δ13C excursions in the last two billion years of Earth history.
The history of organismal evolution, seawater chemistry, and paleoclimate is recorded in layers of carbonate sedimentary rock. Meter-scale cyclic stacking patterns in these carbonates often are interpreted as representing sea level change. A reliable sedimentary proxy for eustasy would be profoundly useful for reconstructing paleoclimate, since sea level responds to changes in temperature and ice volume. However, the translation from water depth to carbonate layering has proven difficult, with recent surveys of modern shallow water platforms revealing little correlation between carbonate facies (i.e., grain size, sedimentary bed forms, ecology) and water depth. We train a convolutional neural network with satellite imagery and new field observations from a 3,000 km2 region northwest of Andros Island (Bahamas) to generate a facies map with 5 m resolution. Leveraging a newly-published bathymetry for the same region, we test the hypothesis that one can extract a signal of water depth change, not simply from individual facies, but from sequences of facies transitions analogous to vertically stacked carbonate strata. Our Hidden Markov Model (HMM) can distinguish relative sea level fall from random variability with ∼90% accuracy. Finally, since shallowing-upward patterns can result from local (autogenic) processes in addition to forced mechanisms such as eustasy, we search for statistical tools to diagnose the presence or absence of external forcings on relative sea level. With a new data-driven forward model that simulates how modern facies mosaics evolve to stack strata, we show how different sea level forcings generate characteristic patterns of cycle thicknesses in shallow carbonates, providing a new tool for quantitative reconstruction of ancient sea level conditions from the geologic record.
The prevalence of ooids in the stratigraphic record, and their association with shallow-water carbonate environments, make ooids an important paleoenvironmental indicator. Recent advances in the theoretical understanding of ooid morphology, along with empirical studies from Turks and Caicos, Great Salt Lake, and The Bahamas, have demonstrated that the morphology of ooids is indicative of depositional environment and hydraulic conditions. To apply this knowledge from modern environments to the stratigraphic record of Earth history, researchers measure the size and shape of lithified ooids on two-dimensional surfaces (i.e., thin sections or polished slabs), often assuming that random 2D slices intersect the nuclei and that the orientation of the ooids is known. Here we demonstrate that these assumptions rarely are true, resulting in errors of up to 35% on metrics like major axis length. We present a method for making 3D reconstructions by serial grinding and imaging, which enables accurate measurement of the morphology of individual ooids within an oolite, as well as the sorting and porosity of a sample. We also provide three case studies that use the morphology of ooids in oolites to extract environmental information. Each case study demonstrates that 2D measurements can be useful if the environmental signal is large relative to the error from 2D measurements. However, 3D measurements substantially improve the accuracy and precision of environmental interpretations. This study focuses on oolites, but errors from 2D measurements are not unique to oolites; this method can be used to extract accurate grain and porosity measurements from any lithified granular sample.
This setup mimics ice lying above the drainage system. In the experiment, a fluid-filled blister is generated via liquid injection into the interface between a transparent elastic layer and a porous substrate. After injection of liquid, the fluid permeates from the blister through the porous substrate, the blister volume V(t) relaxes exponentially with time. Our lab experiments show that varying the permeability of the porous substrate k significantly impacts the relaxation timescale in the experiments.
Monitoring the attention of others is fundamental to social cognition. Most of the literature on the topic assumes that our social cognitive machinery is tuned specifically to the gaze direction of others as a proxy for attention. This standard assumption reduces attention to an externally visible parameter. Here we show that this assumption is wrong and a deeper, more meaningful representation is involved. We presented subjects with two cues about the attentional state of a face: direction of gaze and emotional expression. We tested whether people relied predominantly on one cue, the other, or both. If the traditional view is correct, then the gaze cue should dominate. Instead, people employed a variety of strategies, some relying on gaze, some on expression, and some on an integration of cues. We also assessed people’s social cognitive ability using two, independent, standard tests. If the traditional view is correct, then social cognitive ability, as assessed by the independent tests, should correlate with the degree to which people successfully use the gaze cue to judge the attention state of the face. Instead, social cognitive ability correlated best with the degree to which people successfully integrated the cues together, instead of with the use of any one specific cue. The results suggest a rethink of a fundamental component of social cognition: monitoring the attention of others involves constructing a deep model that is informed by a combination of cues. Attention is a rich process and monitoring the attention of others involves a similarly rich representation.
Hogikyan, Allison; Resplandy, Laure; Yang, Wenchang; Fueglistaler, Stephan
Abstract:
Dataset constructed from GFDL-FLOR preindustrial control experiment run by Wenchang Yang (wenchang@princeton.edu) on Princeton University's tiger CPU. Processing by Allison Hogikyan (hogikyan@princeton.edu) on Princeton University's tigress data processing node. June 2021.
Pacheco, Diego A; Thiberge, Stephan; Pnevmatikakis, Eftychios; Murthy, Mala
Abstract:
Sensory pathways are typically studied starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analysis of activity towards the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration, to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals, and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of spontaneous movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
Abstract:
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
Antony, James W.; Piloto, Luis; Wang, Margaret; Brooks, Paula P.; Norman, Kenneth A.; Paller, Ken A.
Abstract:
The stability of long-term memories is enhanced by reactivation during sleep. Correlative evidence has linked memory reactivation with thalamocortical sleep spindles, although their functional role is not fully understood. Our initial study replicated this correlation and also demonstrated a novel rhythmicity to spindles, such that a spindle is more likely to occur approximately 3–6 s following a prior spindle. We leveraged this rhythmicity to test the role of spindles in memory by using real-time spindle tracking to present cues within versus just after the presumptive refractory period; as predicted, cues presented just after the refractory period led to better memory. Our findings demonstrate a precise temporal link between sleep spindles and memory reactivation. Moreover, they reveal a previously undescribed neural mechanism whereby spindles may segment sleep into two distinct substates: prime opportunities for reactivation and gaps that segregate reactivation events.
Rafidi, Nicole S; Hulbert, Justin C; Brooks, Paula P; Norman, Kenneth A
Abstract:
Repeated testing (as opposed to repeated study) leads to improved long-term memory retention, but the mechanism underlying this improvement remains controversial. In this work, we test the hypothesis that retrieval practice benefits subsequent recall by reducing competition from related memories. This hypothesis implies that the degree of reduction in competition between retrieval practice attempts should predict subsequent memory for the practiced items. To test this prediction, we collected electroencephalography (EEG) data across two sessions. In the first session, participants practiced selectively retrieving exemplars from superordinate semantic categories (high competition), as well as retrieving the names of the superordinate categories from exemplars (low competition). In the second session, participants repeatedly studied and were then tested on Swahili-English vocabulary. One week after session two, participants were again tested on the vocabulary. We trained a within-subject classifier on the data from session one to distinguish high and low competition states. We then used this classifier to measure competition across multiple retrieval practice attempts in the second session. The degree to which competition decreased for a given vocabulary word predicted whether that item was subsequently remembered in the third session. These results are consistent with the hypothesis that repeated testing improves retention by reducing competition.
Small changes in word choice can lead to dramatically different interpretations of narratives. How does the brain accumulate and integrate such local changes to construct unique neural representations for different stories? In this study we created two distinct narratives by changing only a few words in each sentence (e.g. “he” to “she” or “sobbing” to “laughing”) while preserving the grammatical structure across stories. We then measured changes in neural responses between the two stories. We found that the differences in neural responses between the two stories gradually increased along the hierarchy of processing timescales. For areas with short integration windows, such as early auditory cortex, the differences in neural responses between the two stories were relatively small. In contrast, in areas with the longest integration windows at the top of the hierarchy, such as the precuneus, temporal parietal junction, and medial frontal cortices, there were large differences in neural responses between stories. Furthermore, this gradual increase in neural difference between the stories was highly correlated with an area’s ability to integrate information over time. Amplification of neural differences did not occur when changes in words did not alter the interpretation of the story (e.g. “sobbing” to “crying”). Our results demonstrate how subtle differences in words are gradually accumulated and amplified along the cortical hierarchy as the brain constructs a narrative over time.
Bejjanki, Vikranth R.; da Silveira, Rava Azeredo; Cohen, Jonathan D.; Turk-Browne, Nicholas B.
Abstract:
Multivariate decoding methods, such as multivoxel pattern analysis (MVPA), are highly effective at extracting information from brain imaging data. Yet, the precise nature of the information that MVPA draws upon remains controversial. Most current theories emphasize the enhanced sensitivity imparted by aggregating across voxels that have mixed and weak selectivity. However, beyond the selectivity of individual voxels, neural variability is correlated across voxels, and such noise correlations may contribute importantly to accurate decoding. Indeed, a recent computational theory proposed that noise correlations enhance multivariate decoding from heterogeneous neural populations. Here we extend this theory from the scale of neurons to functional magnetic resonance imaging (fMRI) and show that noise correlations between heterogeneous populations of voxels (i.e., voxels selective for different stimulus variables) contribute to the success of MVPA. Specifically, decoding performance is enhanced when voxels with high vs. low noise correlations (measured during rest or in the background of the task) are selected during classifier training. Conversely, voxels that are strongly selective for one class in a GLM or that receive high classification weights in MVPA tend to exhibit high noise correlations with voxels selective for the other class being discriminated against. Furthermore, we use simulations to show that this is a general property of fMRI data and that selectivity and noise correlations can have distinguishable influences on decoding. Taken together, our findings demonstrate that if there is signal in the data, the resulting above-chance classification accuracy is modulated by the magnitude of noise correlations.
Recent advances in experimental techniques have allowed the simultaneous recordings of
populations of hundreds of neurons, fostering a debate about the nature of the collective
structure of population neural activity. Much of this debate has focused on the
empirical findings of a phase transition in the parameter space of maximum entropy
models describing the measured neural probability distributions, interpreting this phase
transition to indicate a critical tuning of the neural code. Here, we instead focus on the
possibility that this is a first-order phase transition which provides evidence that the
real neural population is in a `structured', collective state. We show that this collective
state is robust to changes in stimulus ensemble and adaptive state. We find that the
pattern of pairwise correlations between neurons has a strength that is well within the
strongly correlated regime and does not require fine tuning, suggesting that this state is
generic for populations of 100+ neurons. We find a clear correspondence between the
emergence of a phase transition, and the emergence of attractor-like structure in the
inferred energy landscape. A collective state in the neural population, in which neural
activity patterns naturally form clusters, provides a consistent interpretation for our
results.
Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
Our daily lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? In this study, participants viewed a fifty-minute audio-visual movie, then verbally described the events while undergoing functional MRI. These descriptions were completely unguided and highly detailed, lasting for up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated (movie-vs.-recall correlation) in default network, medial temporal, and high-level visual areas; moreover, individual event patterns were highly discriminable and similar between people during recollection (recall-vs.-recall similarity), suggesting the existence of spatially organized memory representations. In posterior medial cortex, medial prefrontal cortex, and angular gyrus, activity patterns during recall were more similar between people than to patterns elicited by the movie, indicating systematic reshaping of percept into memory across individuals. These results reveal striking similarity in how neural activity underlying real-life memories is organized and transformed in the brains of different people as they speak spontaneously about past events.
This dataset contains all the model output used to generate the figures and data reported in the article "Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone". The data was generated during spring 2015 using the a modified version of the Ecosystem Demography model version 2, provided as a supplement accompanying the article. The data was generated using the computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. The dataset contains a pdf Readme file which explains in detail how the data can be used. Users are recommended to go through this file before using the data.
Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
Abstract:
Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.