Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
This dataset is a sequence of laser-induced fluorescence images of a dye injected in a channel flow with canopy-like stainless steel rods simulating a vegetation canopy stand. The data is acquired close to the channel bottom at z/h=0.2, where z is the height referenced to the channel bed and h is the canopy height. The dataset provides spatial distribution of scalar concentration in a plane parallel to the channel bed. The data has been used (but the data itself has not been published or available to the public) in previous work. The references are: Ghannam, K., Poggi, D., Porporato, A., & Katul, G. (2015). The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorology,157(3), 447–460. Ghannam, K, Poggi, D., Bou-Zeid, E., Katul, G. (2020). Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophysical Research Letters (accepted).
Gilson, Erik; Lee, H.; Bortolon, A.; Choe, W.; Diallo, A.; Hong, S. H.; Lee, H. M.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Park, S. H.; Song, I. W.; Song, J. I.; Yun, S. W.; Yoon, S. W.; Nazikian, R.
Microscopy images are part of a paper entitled "Structured foraging of soil predators unveils functional responses to bacterial defenses" by Fernando Rossine, Gabriel Vercelli, Corina Tarnita, and Thomas Gregor. For detailed acquisition methods see the paper. Experiments were performed between 2019 and 2020 at Princeton University. Two types of images are provided, macroscopic and microscopic widefiled Images. Macroscopic images all show Petri dishes covered in fluorescent bacteria being consumed by amoebae. Images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum. Images used for the creation of a profile were all taken within 30 minutes of each other. Within each directory numbered images are independent replicates. The raw video directory contains time series for dishes under drug treatments. Each numbered folder is a sequence of photos (taken 30 minutes apart of each other) of a single dish. Microscopic images all show amoebae consuming bacteria on a petri dish. The 45 minute videos show either edge cells (located at the edge of amoebae colonies), or inner cells (located 2.5 millimeters towards the center of the colony, from the edge). Videos are confocal stacks, with bacteria showing in green and amoebae appearing as black holes within the bacterial lawn. As was for the macroscopic images, images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum.