Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
Abstract:
A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
The dataset is a compilation of real time ground observations of criteria pollutants monitored at the Central Pollution Control Board (CPCB) continuous stations in India, from 2015-2019. Pollutants included are PM2.5, PM10, SO2, NO2 and O3 and are archived at every hour for all stations across India.
Yang, Yuan; Pan, Ming; Beck, Hylke; Fisher, Colby; Beighley, R. Edward; Kao, Shih-Chieh; Hong, Yang; Wood, Eric
Abstract:
Conventional basin-by-basin approaches to calibrate hydrologic models are limited to gauged basins and typically result in spatially discontinuous parameter fields. Moreover, the consequent low calibration density in space falls seriously behind the need from present-day applications like high resolution river hydrodynamic modeling. In this study we calibrated three key parameters of the Variable Infiltration Capacity (VIC) model at every 1/8° grid-cell using machine learning-based maps of four streamflow characteristics for the conterminous United States (CONUS), with a total of 52,663 grid-cells. This new calibration approach, as an alternative to parameter regionalization, applied to ungauged regions too. A key difference made here is that we tried to regionalize physical variables (streamflow characteristics) instead of model parameters whose behavior may often be less well understood. The resulting parameter fields no longer presented any spatial discontinuities and the patterns corresponded well with climate characteristics, such as aridity and runoff ratio. The calibrated parameters were evaluated against observed streamflow from 704/648 (calibration/validation period) small-to-medium-sized catchments used to derive the streamflow characteristics, 3941/3809 (calibration/validation period) small-to-medium-sized catchments not used to derive the streamflow characteristics) as well as five large basins. Comparisons indicated marked improvements in bias and Nash-Sutcliffe efficiency. Model performance was still poor in arid and semiarid regions, which is mostly due to both model structural and forcing deficiencies. Although the performance gain was limited by the relative small number of parameters to calibrate, the study and results here served as a proof-of-concept for a new promising approach for fine-scale hydrologic model calibrations.
Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.
Abstract:
A 'weighted magnetic bearing' has been developed to improve the performance of
rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing
reduces frictional losses within a double-sided, disc-style RLFF to negligible levels.
Operating such an RLFF under 'frictionless' conditions provides two major benefits.
First, the steady-state velocity of the RLFF magnets matches the average velocity of the
flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow
measurements without any calibration or prior knowledge of the fluid properties. Second,
due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot
be detected when conventional, high-friction bearings are used. This paper provides a
brief background on RLFFs, gives a detailed description of weighted magnetic bearings,
and compares experimental RLFF data to measurements taken with a commercially available
flowmeter.
Chen, Xu; Gallagher, Kevin P.; Mauzerall, Denise L.
Abstract:
Global power generation must rapidly decarbonize by mid-century to meet the goal of stabilizing global warming below 2 degree Celsius. To meet this objective, multilateral development banks (MDBs) have gradually reduced fossil fuel and increased renewable energy financing. Meanwhile, globally active national development finance institutions (DFIs) from Japan and South Korea have continued to finance overseas coal plants. Less is known about the increasingly active Chinese DFIs. Here we construct a new dataset of China’s policy banks’ overseas power generation financing and compare their technology choices and impact on generation capacity with MDBs and Japanese and South Korean DFIs. We find Chinese DFI power financing since 2000 has dramatically increased, surpassing other East Asian national DFIs and the major MDBs’ collective public sector power financing in 2013. As most Chinese DFI financing is currently in coal, decarbonization of their power investments will be critical in reducing future carbon emissions from recipient countries.
Petsev, Nikolai D.; Stillinger, Frank H.; Debenedetti, Pablo G.
Abstract:
Source code for our energy-conserving reformulation of the 4-site molecular model for chiral phenomena originally introduced by Latinwo et al. [F. Latinwo, F. H. Stillinger, and P. G. Debenedetti, Molecular Model for Chirality Phenomena, J. Chem. Phys. 145, 154503 (2016)]. The reformulation includes an additional 8-body force that arises from an explicit configuration-dependent term in the potential energy function, resulting in a coarse-grained energy-conserving force field for molecular dynamics simulations of chirality phenomena. In this model, the coarse-grained interaction energy between two tetramers depends on their respective chiralities, and is controlled by a parameter λ, where favors local configurations involving tetramers of opposite chirality, and gives energetic preference to configurations involving tetramers of the same chirality. The source code is for use with the LAMMPS simulation package.
Explosive volcanic eruptions have large climate impacts, and can serve as observable tests of the climatic response to radiative forcing. Using a high resolution climate model, we contrast the climate responses to Pinatubo, with symmetric forcing, and those to Santa Maria and Agung, which had meridionally asymmetric forcing. Although Pinatubo had larger global-mean forcing, asymmetric forcing strongly shifts the latitude of tropical rainfall features, leading to larger local precipitation/TC changes. For example, North Atlantic TC activity over is enhanced/reduced by SH-forcing (Agung)/NH-forcing (Santa Maria), but changes little in response to the Pinatubo forcing. Moreover, the transient climate sensitivity estimated from the response to Santa Maria is 20% larger than that from Pinatubo or Agung. This spread in climatic impacts of volcanoes needs to be considered when evaluating the role of volcanoes in global and regional climate, and serves to contextualize the well-observed response to Pinatubo.
Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively. Included in this repository are the instructions and corresponding code required to build the dataset and run the analysis in the manuscript.
Geochemical and geomechanical perturbations of the subsurface caused by the injection of fluids present the risk of leakage and seismicity. This study investigated how flow of acidic fluids affects hydraulic and frictional properties of fractures using experiments with 3.8 cm-long specimens of Eagle Ford shale, a laminated shale with carbonate-rich strata. In low-pressure flow cells, one set of samples was exposed to an acidic brine and another set was exposed to a neutral brine. X-ray computed tomography and x-ray fluorescence analysis revealed that samples exposed to the acidic brine were calcite-depleted and had developed a porous altered layer, while the other set showed little evidence of alteration. After reaction, samples were compacted and sheared in a triaxial cell that supplied normal stress and differential pore pressure at prescribed sliding velocities, independently measuring friction and permeability. During the initial compaction, the porous altered layer collapsed into fine particles that filled the fracture aperture. This effectively impeded flow and sealed the fracture, resulting in a decrease in fracture permeability by 1 to 2 orders of magnitude relative to the compressed unaltered fractures. During shear, the collapsed layer of fine-grained particles prevented the formation of interlocking micro-asperities resulting in lower frictional strength. With regard to subsurface risks, this study showcases how coupled geochemical and geomechanical processes could favorably seal fractures to inhibit leakage, but also could increase the likelihood of induced seismicity. These findings have important implications for geological carbon sequestration, pressurized fluid energy storage, geothermal energy, and other subsurface technologies.