Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
This dataset is a sequence of laser-induced fluorescence images of a dye injected in a channel flow with canopy-like stainless steel rods simulating a vegetation canopy stand. The data is acquired close to the channel bottom at z/h=0.2, where z is the height referenced to the channel bed and h is the canopy height. The dataset provides spatial distribution of scalar concentration in a plane parallel to the channel bed. The data has been used (but the data itself has not been published or available to the public) in previous work. The references are: Ghannam, K., Poggi, D., Porporato, A., & Katul, G. (2015). The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorology,157(3), 447–460. Ghannam, K, Poggi, D., Bou-Zeid, E., Katul, G. (2020). Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophysical Research Letters (accepted).
Gilson, Erik; Lee, H.; Bortolon, A.; Choe, W.; Diallo, A.; Hong, S. H.; Lee, H. M.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Park, S. H.; Song, I. W.; Song, J. I.; Yun, S. W.; Yoon, S. W.; Nazikian, R.
Microscopy images are part of a paper entitled "Structured foraging of soil predators unveils functional responses to bacterial defenses" by Fernando Rossine, Gabriel Vercelli, Corina Tarnita, and Thomas Gregor. For detailed acquisition methods see the paper. Experiments were performed between 2019 and 2020 at Princeton University. Two types of images are provided, macroscopic and microscopic widefiled Images. Macroscopic images all show Petri dishes covered in fluorescent bacteria being consumed by amoebae. Images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum. Images used for the creation of a profile were all taken within 30 minutes of each other. Within each directory numbered images are independent replicates. The raw video directory contains time series for dishes under drug treatments. Each numbered folder is a sequence of photos (taken 30 minutes apart of each other) of a single dish. Microscopic images all show amoebae consuming bacteria on a petri dish. The 45 minute videos show either edge cells (located at the edge of amoebae colonies), or inner cells (located 2.5 millimeters towards the center of the colony, from the edge). Videos are confocal stacks, with bacteria showing in green and amoebae appearing as black holes within the bacterial lawn. As was for the macroscopic images, images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum.
Griffies, Stephen M; Beadling, Rebecca L; Krasting, John P; Hurlin, William J
Abstract:
This output was produced in coordination with the Southern Ocean Freshwater release model experiments Initiative (SOFIA) and is the Tier 1 experiment where freshwater is delivered in a spatially and temporally uniform pattern at the surface of the ocean at sea surface temperature in a 1-degree latitude band extending from Antarctica’s coastline. The total additional freshwater flux imposed as a monthly freshwater flux entering the ocean is 0.1 Sv. Users are referred to the methods section of Beadling et al. (2022) for additional details on the meltwater implementation in CM4 and ESM4. The datasets in this collection contain model output from the coupled global climate model, CM4, and Earth System Model, ESM4, both developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). The ocean_monthly_z and ocean_annual_z output are provided as z depth levels in meters as opposed to the models native hybrid vertical ocean coordinate which consists of z* (quasi-geopotential) coordinates in the upper ocean through the mixed layer, transitioning to isopycnal (referenced to 2000 dbar) in the ocean interior. Please see README for further details.
The Volumetric Camera Calibration Dataset is used for a camera calibration system. Intersecting laser beams are traversed over a volume in the test domain. At each location, the intersecting beams are imaged by camera1 and camera2. A test object is imaged for evaluation.
Hill, K. W.; Gao, L.; Kraus, B. F.; Bitter, M.; Efthimion, P. C.; Pablant, N. A.; Schneider, M. B.; Thorn, D. B.; Chen, H.; Kauffman, R. L.; Liedahl, D. A.; MacDonald, M. J.; MacPhee, A. J.; Scott, H. A.; Stoupin, S.; Doron, R.; Stambulchik, E.; Maron, Y.; Lahmann, B.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments (pre-processed), previously published observation-based datasets, and code to reproduce figures from these datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
Abstract:
More than 20% Amazon rainforest has been cleared in the past three decades triggering important hydroclimatic changes. Small-scale (~few kilometers) deforestation in the 1980s has caused thermally-triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared to the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately ±25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing a negligible role of large-scale climate variability. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry season hydroclimate. Our study illustrates the strong scale-sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally- to a dynamically-driven hydroclimatic regime.
Amazonian deforestation causes systematic changes in regional dry season precipitation. Some of these changes at contemporary large scales (a few hundreds of kilometers) of deforestation have been associated with a ‘dynamical mesoscale circulation’, induced by the replacement of rough forest with smooth pasture. In terms of decadal averages, this dynamical mechanism yields increased precipitation in downwind regions and decreased precipitation in upwind regions of deforested areas. Daily, seasonal, and interannual variations in this phenomenon may exist, but have not yet been identified or explained. This study uses observations and numerical simulations to develop relationships between the dynamical mechanism and the local- and continental-scale atmospheric conditions across a range of time scales. It is found that the strength of the dynamical mechanism is primarily controlled by the regional-scale thermal and dynamical conditions of the boundary layer, and not by the continental- and global-scale atmospheric state. Lifting condensation level and wind speed within the boundary layer have large and positive correlations with the strength of the dynamical mechanism. The strength of these relationships depends on time scale and is strongest over the seasonal cycle. Overall, the dynamical mechanism is found to be strongest during times when the atmosphere is relatively stable. Hence, for contemporary large scales of deforestation this phenomenon is found to be the prevalent convective triggering mechanism during the dry and parts of transition seasons (especially during the dry-to-wet transition), significantly affecting the hydroclimate during this period.
Kiefer, Janik; Brunner, Claudia E.; Hansen, Martin O. L.; Hultmark, Marcus
Abstract:
This data set contains data of a NACA 0021 airfoil as it undergoes upward ramp-type pitching motions at high Reynolds numbers and low Mach numbers. The parametric study covers a wide range of chord Reynolds numbers, reduced frequencies and pitching geometries characterized by varying mean angle and angle amplitude. The data were acquired in the High Reynolds number Test Facility at Princeton University, which is a closed-loop wind tunnel that can be pressurized up to 23 MPa and allowed for variation of the chord Reynolds number over a range of 5.0 × 10^5 ≤ Re_c ≤ 5.5 × 10^6. Data were acquired using 32 pressure taps along the surface of the airfoil. The data are the phase-averaged results of 150 individual half-cycles for any given test case.
Kim, Donghoon; Duffy, Thomas S.; Smith, Raymond F.; Ocampo, Ian K.; Coppari, Federica; Marshall, Michelle C.; Ginnane, Mary Kate; Wicks, June; Tracy, Sally J.; Millot, Marius; Lazicki, Amy; Rygg, Jame R.; Eggert, Jon H.
Kim, Donghoon; Tracy, Sally J; Smith, Raymond F; Gleason, Arianna E; Bolme, Cindy A; Prakapenka, Vitali B; Appel, Karen; Speziable, Sergio; Wicks, June K; Berryman, Eleanor J; Han, Sirus K; Schoelmerich, Markus O; Lee, Hae Ja; Nagler, Bob; Cunningham, Eric F; Akin, Minta C; Asimow, Paul D; Eggert, Jon H; Duffy, Thomas S
Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively. Included in this repository are the instructions and corresponding code required to build the dataset and run the analysis in the manuscript.
This dataset includes information about approximately 6,000 books and other items with bibliographic data as well as summary information about when the item circulated in the Shakespeare and Company lending library and the number of times an item was borrowed or purchased.
This dataset includes information about approximately 6,000 books and other items with bibliographic data as well as summary information about when the item circulated in the Shakespeare and Company lending library and the number of times an item was borrowed or purchased.
The Shakespeare and Company Project: Lending Library Events dataset includes information about approximately 35,000 lending library events including membership activities such as subscriptions, renewals and reimbursements and book-related activities such as borrowing and purchasing. For events related to lending library cards that are available as digital surrogates, IIIF links are provided.
The Shakespeare and Company Project: Lending Library Events dataset includes information about approximately 35,000 lending library events including membership activities such as subscriptions, renewals and reimbursements and book-related activities such as borrowing and purchasing. For events related to lending library cards that are available as digital surrogates, IIIF links are provided.
The Shakespeare and Company Project: Lending Library Members dataset includes information about approximately 5,600 members of Sylvia Beach's Shakespeare and Company lending library.
The Shakespeare and Company Project: Lending Library Members dataset includes information about approximately 5,200 members of Sylvia Beach's Shakespeare and Company lending library.
The Shakespeare and Company Project makes three datasets available to download in CSV and JSON formats. The datasets provide information about lending library members; the books that circulated in the lending library; and lending library events, including borrows, purchases, memberships, and renewals. The datasets may be used individually or in combination site URLs are consistent identifiers across all three. The DOIs for each dataset are as follows: Members (https://doi.org/10.34770/nsa4-3t76); Books (https://doi.org/10.34770/079z-h206); Events (https://doi.org/10.34770/rtbp-kv40).
The Shakespeare and Company Project makes three datasets available to download in CSV and JSON formats. The datasets provide information about lending library members; the books that circulated in the lending library; and lending library events, including borrows, purchases, memberships, and renewals. The datasets may be used individually or in combination site URLs are consistent identifiers across all three.
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J.-K.; Podesta, M.; Heidbrink, W. W.
Kraus, B. Frances; Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Hollinger, R.; Wang, Shoujun; Song, Huanyu; Nedbailo, R.; Rocca, J. J.; Mancini, R. C.; MacDonald, M. J.; Beatty, C. B.; Shepherd, R.
We provide all the test data and corresponding predictions for our paper, “Practical Fluorescence Reconstruction Microscopy for High-Content Imaging”. Please refer to the Methods section in this paper for experimental details. For each experimental condition, we provide the input transmitted-light images (either phase contrast or DIC), the ground truth fluorescence images, and the output predicted fluorescence images which should reconstruct the ground truth fluorescence images.
The dataset contains the model file for the Global Adjoint Tomography Model 25 (GLAD-M25). The model file contains parameters defined on the spectral-element mesh and is recommend to be used in SPECFEM3D GLOBE for seismic wave simulation at the global scale.