Complete dataset of pore water chemical parameters measured at the Marsh Resource Meadowlands Mitigation Bank, a tidal marsh within the New Jersey Meadowlands, from March 2011 to April 2012. Analytes measured include dissolved methane, sulfate, dissolved organic carbon, temperature, salinity, and pH. Measurements were conducted using porewater dialysis samplers, and water was sampled from the surface to a depth of 60 cm.
The Kelvin-Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfven velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfv\'en Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfven wave. There are remarkable differences between the primary and the secondary KH waves including wave frequency, the growth rate, and the ratio between transverse and the compressional component. The secondary KH wave energy is concentrated near the shear Alfven wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at lower Mach number. Because the transverse component of the secondary KH waves is stronger than the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.
Martin, Nicholas R; Blackman, Edith; Bratton, Benjamin P; Chase, Katelyn J; Bartlett, Thomas M; Gitai, Zemer
Abstract:
Bacterial species have diverse cell shapes that enable motility, colonization, and virulence. The cell wall defines bacterial shape and is primarily built by two cytoskeleton-guided synthesis machines, the elongasome and the divisome. However, the mechanisms producing complex shapes, like the curved-rod shape of Vibrio cholerae, are incompletely defined. Previous studies have reported that species-specific regulation of cytoskeleton-guided machines enables formation of complex bacterial shapes such as cell curvature and cellular appendages. In contrast, we report that CrvA and CrvB are sufficient to induce complex cell shape autonomously of the cytoskeleton in V. cholerae. The autonomy of the CrvAB module also enables it to induce curvature in the Gram-negative species Escherichia coli, Pseudomonas aeruginosa, Caulobacter crescentus, and Agrobacterium tumefaciens. Using inducible gene expression, quantitative microscopy, and biochemistry we show that CrvA and CrvB circumvent the need for patterning via cytoskeletal elements by regulating each other to form an asymmetrically-localized, periplasmic structure that directly binds to the cell wall. The assembly and disassembly of this periplasmic structure enables dynamic changes in cell shape. Bioinformatics indicate that CrvA and CrvB may have diverged from a single ancestral hybrid protein. Using fusion experiments in V. cholerae, we find that a synthetic CrvA/B hybrid protein is sufficient to induce curvature on its own, but that expression of two distinct proteins, CrvA and CrvB, promotes more rapid curvature induction. We conclude that morphological complexity can arise independently of cell shape specification by the core cytoskeleton-guided synthesis machines.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments (pre-processed), previously published observation-based datasets, and code to reproduce figures from these datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
Microscopy images are part of a paper entitled "Structured foraging of soil predators unveils functional responses to bacterial defenses" by Fernando Rossine, Gabriel Vercelli, Corina Tarnita, and Thomas Gregor. For detailed acquisition methods see the paper. Experiments were performed between 2019 and 2020 at Princeton University. Two types of images are provided, macroscopic and microscopic widefiled Images. Macroscopic images all show Petri dishes covered in fluorescent bacteria being consumed by amoebae. Images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum. Images used for the creation of a profile were all taken within 30 minutes of each other. Within each directory numbered images are independent replicates. The raw video directory contains time series for dishes under drug treatments. Each numbered folder is a sequence of photos (taken 30 minutes apart of each other) of a single dish. Microscopic images all show amoebae consuming bacteria on a petri dish. The 45 minute videos show either edge cells (located at the edge of amoebae colonies), or inner cells (located 2.5 millimeters towards the center of the colony, from the edge). Videos are confocal stacks, with bacteria showing in green and amoebae appearing as black holes within the bacterial lawn. As was for the macroscopic images, images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum.
Bhattacharjee, Tapomoy; Amchin, Daniel; Alert, Ricard; Ott, Jenna; Datta, Sujit
Abstract:
Collective migration -- the directed, coordinated motion of many self-propelled agents -- is a fascinating emergent behavior exhibited by active matter that has key functional implications for biological systems. Extensive studies have elucidated the different ways in which this phenomenon may arise. Nevertheless, how collective migration can persist when a population is confronted with perturbations, which inevitably arise in complex settings, is poorly understood. Here, by combining experiments and simulations, we describe a mechanism by which collectively migrating populations smooth out large-scale perturbations in their overall morphology, enabling their constituents to continue to migrate together. We focus on the canonical example of chemotactic migration of Escherichia coli, in which fronts of cells move via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We identify two distinct modes in which chemotaxis influences the morphology of the population: cells in different locations along a front migrate at different velocities due to spatial variations in (i) the local nutrient gradient and in (ii) the ability of cells to sense and respond to the local nutrient gradient. While the first mode is destabilizing, the second mode is stabilizing and dominates, ultimately driving smoothing of the overall population and enabling continued collective migration. This process is autonomous, arising without any external intervention; instead, it is a population-scale consequence of the manner in which individual cells transduce external signals. Our findings thus provide insights to predict, and potentially control, the collective migration and morphology of cell populations and diverse other forms of active matter.
Pan, Da; Gelfand, Ilya; Tao, Lei; Abraha, Michael; Sun, Kang; Guo, Xuehui; Chen, Jiquan; Robertson, G. Philip; Zondlo, Mark A.
Abstract:
This dataset contains spectroscopic simulations, experimental results for the 2202 cm-1 N2O absorption line, and N2O flux measurements shown in "A New Open-path Eddy Covariance Method for N2O and Other Trace Gases that Minimizes Temperature Corrections" by Da Pan, Ilya Gelfand, Lei Tao, Michael Abraha, Kang Sun, Xuehui Guo, Jiquan Chen, G. Philip Robertson, and Mark A. Zondlo. The HITRAN Application Programming Interface (HAPI) with HITRAN 2016 was used for spectroscopic simulations. Experiments were conducted to quantify H2O-broadened half-width at half maximum and validate spectroscopic simulations. N2O flux was measured with both eddy covariance and static chamber methods.
Elevated reactive nitrogen (Nr) deposition is a concern for alpine ecosystems, and dry NH3 deposition is a key contributor. Understanding how emission hotspots impact downwind ecosystems through dry NH3 deposition provides opportunities for effective mitigation. However, direct NH3 flux measurements with sufficient temporal resolution to quantify such events are rare. Here, we measured NH3 fluxes at Rocky Mountain National Park (RMNP) during two summers and analyzed transport events from upwind agricultural and urban sources in northeastern Colorado. We deployed open-path NH3 sensors on a mobile laboratory and an eddy covariance tower to measure NH3 concentrations and fluxes. Our spatial sampling illustrated an upslope event that transported NH3 emissions from the hotspot to RMNP. Observed NH3 deposition was significantly higher when backtrajectories passed through only the agricultural region (7.9 ng m-2 s-1) versus only the urban area (1.0 ng m-2 s-1) and both urban and agricultural areas (2.7 ng m-2 s-1). Cumulative NH3 fluxes were calculated using observed, bidirectional modeled, and gap-filled fluxes. More than 40% of the total dry NH3 deposition occurred when air masses were traced back to agricultural source regions. More generally, we identified that 10 (25) more national parks in the U.S. are within 100 (200) km of an NH3 hotspot, and more observations are needed to quantify the impacts of these hotspots on dry NH3 depositions in these regions.
This dataset encompasses two distinct sets of data analyzed in the study, namely Asian American Scholar Forum survey data and Microsoft Academic Graph bibleometrics data:
Yu Xie, Xihong Lin, Ju Li, Qian He, Junming Huang, Caught in the Crossfire: Fears of Chinese-American Scientists, Proceedings of the National Academy of Sciences, in press (2023).
This dataset contains example input files, training data sets and potential files related to the publication "First-principles-based Machine Learning Models for Phase Behavior and Transport Properties of CO2." by Mathur et al (2023). In this work, we developed machine learning models for CO2 based on different exchange-correlation DFT functionals. We assessed their performance on liquid densities, vapor-liquid equilibrium and transport properties.
Guo, Xuehui; Pan, Da; Daly, Ryan; Chen, Xi; Walker, John; Tao, Lei; McSpiritt, James; Zondlo, Mark
Abstract:
Gas-phase ammonia (NH3), emitted primarily from agriculture, contributes significantly to reactive nitrogen (Nr) deposition. Excess deposition of Nr to the environment causes acidification, eutrophication, and loss of biodiversity. The exchange of NH3 between land and atmosphere is bidirectional and can be highly heterogenous when underlying vegetation and soil characteristics differ. Direct measurements that assess the spatial heterogeneity of NH3 fluxes are lacking. To this end, we developed and deployed two fast-response, quantum cascade laser-based open-path NH3 sensors to quantify NH3 fluxes at a deciduous forest and an adjacent grassland separated by 700 m in North Carolina, United States from August to November, 2017. The sensors achieved 10 Hz precisions of 0.17 ppbv and 0.23 ppbv in the field, respectively. Eddy covariance calculations showed net deposition of NH3 (-7.3 ng NH3-N m−2 s−1) to the forest canopy and emission (3.2 ng NH3-N m−2 s−1) from the grassland. NH3 fluxes at both locations displayed diurnal patterns with absolute magnitudes largest midday and with smaller peaks in the afternoons. Concurrent biogeochemistry data showed over an order of magnitude higher NH3 emission potentials from green vegetation at the grassland compared to the forest, suggesting a possible explanation for the observed flux differences. Back trajectories originating from the site identified the upwind urban area as the main source region of NH3. Our work highlights the fact that adjacent natural ecosystems sharing the same airshed but different vegetation and biogeochemical conditions may differ remarkably in NH3 exchange. Such heterogeneities should be considered when upscaling point measurements, downscaling modeled fluxes, and evaluating Nr deposition for different natural land use types in the same landscape. Additional in-situ flux measurements accompanied by comprehensive biogeochemical and micrometeorological records over longer periods are needed to fully characterize the temporal variabilities and trends of NH3 fluxes and identify the underlying driving factors.
Numerical data is tabulated for all plots (Figures 2, 3a-b, 4-89, S1, S4a-b,d, S5a-b,d, S6-S156) and included as separate spreadsheets categorized by figure in a .zip file in the Supplementary Material. Error bars in Figure 4 show the spread of data observed for 4 and 5 trials on independent samples for MIL-101 and MOF-235, respectively. Figure 6a shows the average of triplicate filtrate test conversions with error propagated based on this spread. Figures 6b and S165 error bars on rate constants are determined based on propagated conversion uncertainty for independent trials and extracted standard deviations of pseudo-first order rate constants from linearized plots. Error bars on other plots represent propagation of experimental uncertainty on single trials.
Zhou, Mi; Peng, Liqun; Zhang, Lin; Mauzerall, Denise L.
Abstract:
This dataset is created for the paper titled 'Environmental Benefits and Household Costs of Clean Heating Options in Northern China' and published on Nature Sustainability. Based on a 2015 regional anthropogenic emission inventory (base case), we propose seven counterfactual scenarios in which all 2015 residential solid fuel heating in northern China switches to one of the following non-district heating options: clean coal with improved stoves (CCIS), natural gas heaters (NGH), resistance heaters (RH), or air-to-air heat pumps (AAHP). This dataset provides the following gridded information for the base case and each clean heating scenario: (1) annual residential heating emissions for PM2.5/NOx/SO2; (2) monthly mean surface PM2.5 concentrations from the WRF-Chem model; (3) annual PM2.5-related premature deaths calculated by the GEMM model; (4) 2015 population in China; (5) mask for provinces in China; (6) longitude and latitude of each grid center.
This distribution compiles numerous physical properties for 2,585 intrinsically disordered proteins (IDPs) obtained by coarse-grained molecular dynamics simulation. This combination comprises "Dataset A" as reported in "Featurization strategies for polymer sequence or composition design by machine learning" by Roshan A. Patel, Carlos H. Borca, and Michael A. Webb (DOI: 10.1039/D1ME00160D). The specific IDP sequences are sourced from version 9.0 of the DisProt database. The simulations were performed using the LAMMPS molecular dynamics engine. The interactions used for simulation are obtained from R. M. Regy , J. Thompson , Y. C. Kim and J. Mittal , Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins, Protein Sci., 2021, 1371 —1379.
This item provides access to all configurations of single-chain nanoparticles analyzed in the manuscript "Sequence Patterning, Morphology, and Dispersity in Single-Chain Nanoparticles: Insights from Simulation and Machine Learning" by Roshan A. Patel, Sophia Colmenares, and Michael A. Webb (DOI: 10.1021/acspolymersau.3c00007). The single-chain nanoparticles derive from 320 unique precursor chains that are distinguished by the fraction of linker beads that decorate a fixed-length polymer backbone and the distribution or blockiness of those linker beads. The data is provided in the form of serialized object using the `pickle' python module. The data was compiled using Python version 3.8.8 and Clang 10.0.0. The Python object loaded from the .pkl file is a nested list, with the first dimension having 7,680 entries for the 7,680 unique single-chain nanoparticles produced in the aforementioned paper. Each of those 7,680 entries is itself a list with 20 entries, representing the 20 different simulation snapshots of the given single-chain nanoparticle. Each of the 20 entries is another list with two entries, with the first being a numpy.ndarray containing the x,y,z coordinates of all the beads comprising the single-chain nanoparticle and the second being a numpy.ndarray with a numerical encoding to indicate whether the beads are backbone (indicated as '0') or linker beads (indicated as '1'). Altogether, this provides 153,600 configurations of single-chain nanoparticles.
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
Abstract:
More than 20% Amazon rainforest has been cleared in the past three decades triggering important hydroclimatic changes. Small-scale (~few kilometers) deforestation in the 1980s has caused thermally-triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared to the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately ±25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing a negligible role of large-scale climate variability. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry season hydroclimate. Our study illustrates the strong scale-sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally- to a dynamically-driven hydroclimatic regime.
This dataset provides the data generated during the project analyzing ‘Food Consumption Strategies for Addressing Air Pollution, Climate Change, Water Use, and Public Health in China’. It includes the code for generating the alternative dietary scenarios, for analyzing the health impacts of alternative diets, and for visualization of results.
The dataset contains the model file for the Global Adjoint Tomography Model 25 (GLAD-M25). The model file contains parameters defined on the spectral-element mesh and is recommend to be used in SPECFEM3D GLOBE for seismic wave simulation at the global scale.
Chen, Xu; Li, Zhongshu; Gallagher, Kevin P.; Mauzerall, Denise L.
Abstract:
Power sector decarbonization requires a fundamental redirection of global finance from fossil fuel infrastructure towards low carbon technologies. Bilateral finance plays an important role in the global energy transition to non-fossil energy, but an understanding of its impact is limited. Here, for the first time, we compare the influence of overseas finance from the three largest economies – United States, China, and Japan – on power generation development beyond their borders and evaluate the associated long-term CO2 emissions. We construct a new dataset of Japanese and U.S. overseas power generation finance between 2000-2018 by analyzing their national development finance institutions’ press releases and annual reports and tracking their foreign direct investment at the power plant level. Synthesizing this new data with previously developed datasets for China, we find that the three countries’ overseas financing concentrated in fossil fuel power technologies over the studied period. Financing commitments from China, Japan, and the United States facilitated 101 GW, 95 GW, and 47 GW overseas power capacity additions, respectively. The majority of facilitated capacity additions are fossil fuel plants (64% for China, 87% for Japan, and 66% for the United States). Each of the countries’ contributions to non-hydro renewable generation was less than 15% of their facilitated capacity additions. Together, we estimate that overseas fossil fuel power financing through 2018 from these three countries will lock in 24 Gt CO2 emissions by 2060. If climate targets are to be met, replacing bilateral fossil fuel financing with financing of renewable technologies is crucial.
There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.
Geyman, Emily C.; Wu, Ziman; Nadeau, Matthew D.; Edmonsond, Stacey; Turner, Andrew; Purkis, Sam J.; Howes, Bolton; Dyer, Blake; Ahm, Anne-Sofie C.; Yao, Nan; Deutsch, Curtis A.; Higgins, John A.; Stolper, Daniel A.; Maloof, Adam C.
Abstract:
Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. In this contribution, we present new geochemical data that bear on this problem, including stable isotope and minor and trace element data from carbonate sources in the modern Bahamas such as ooids, corals, foraminifera, and green algae.
The carbon isotopic (δ13C) composition of shallow-water carbonates often is interpreted to reflect the δ13C of the global ocean and is used as a proxy for changes in the global carbon cycle. However, local platform processes, in addition to meteoric and marine diagenesis, may decouple carbonate δ13C from that of the global ocean. To shed light on the extent to which changing sediment grain composition may produce δ13C shifts in the stratigraphic record, we present new δ13C measurements of benthic foraminifera, solitary corals, calcifying green algae, ooids, coated grains, and lime mud from the modern Great Bahama Bank (GBB). This survey of a modern carbonate environment reveals δ13C variability comparable to the largest δ13C excursions in the last two billion years of Earth history.
The history of organismal evolution, seawater chemistry, and paleoclimate is recorded in layers of carbonate sedimentary rock. Meter-scale cyclic stacking patterns in these carbonates often are interpreted as representing sea level change. A reliable sedimentary proxy for eustasy would be profoundly useful for reconstructing paleoclimate, since sea level responds to changes in temperature and ice volume. However, the translation from water depth to carbonate layering has proven difficult, with recent surveys of modern shallow water platforms revealing little correlation between carbonate facies (i.e., grain size, sedimentary bed forms, ecology) and water depth. We train a convolutional neural network with satellite imagery and new field observations from a 3,000 km2 region northwest of Andros Island (Bahamas) to generate a facies map with 5 m resolution. Leveraging a newly-published bathymetry for the same region, we test the hypothesis that one can extract a signal of water depth change, not simply from individual facies, but from sequences of facies transitions analogous to vertically stacked carbonate strata. Our Hidden Markov Model (HMM) can distinguish relative sea level fall from random variability with ∼90% accuracy. Finally, since shallowing-upward patterns can result from local (autogenic) processes in addition to forced mechanisms such as eustasy, we search for statistical tools to diagnose the presence or absence of external forcings on relative sea level. With a new data-driven forward model that simulates how modern facies mosaics evolve to stack strata, we show how different sea level forcings generate characteristic patterns of cycle thicknesses in shallow carbonates, providing a new tool for quantitative reconstruction of ancient sea level conditions from the geologic record.
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including HIV and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection and preclinical testing of novel immunotherapeutics.
The prevalence of ooids in the stratigraphic record, and their association with shallow-water carbonate environments, make ooids an important paleoenvironmental indicator. Recent advances in the theoretical understanding of ooid morphology, along with empirical studies from Turks and Caicos, Great Salt Lake, and The Bahamas, have demonstrated that the morphology of ooids is indicative of depositional environment and hydraulic conditions. To apply this knowledge from modern environments to the stratigraphic record of Earth history, researchers measure the size and shape of lithified ooids on two-dimensional surfaces (i.e., thin sections or polished slabs), often assuming that random 2D slices intersect the nuclei and that the orientation of the ooids is known. Here we demonstrate that these assumptions rarely are true, resulting in errors of up to 35% on metrics like major axis length. We present a method for making 3D reconstructions by serial grinding and imaging, which enables accurate measurement of the morphology of individual ooids within an oolite, as well as the sorting and porosity of a sample. We also provide three case studies that use the morphology of ooids in oolites to extract environmental information. Each case study demonstrates that 2D measurements can be useful if the environmental signal is large relative to the error from 2D measurements. However, 3D measurements substantially improve the accuracy and precision of environmental interpretations. This study focuses on oolites, but errors from 2D measurements are not unique to oolites; this method can be used to extract accurate grain and porosity measurements from any lithified granular sample.
This dataset contains input files, training data and other files related to the machine learning models developed during the work by Muniz et al. In this work, we construct machine learning models based on the MB-pol many-body model. We find that the training set should include cluster configurations as well as liquid phase configurations in order to accurately represent both liquid and VLE properties. The results attest for the ability of machine learning models to accurately represent many-body potentials and provide an efficient avenue for water simulations.
Understanding the condensed-phase behavior of chiral molecules is important in biology, as well as in a range of technological applications, such as the manufacture of pharmaceuticals. Here, we use molecular dynamics simulations to study a chiral four-site molecular model that exhibits a second-order symmetry-breaking phase transition from a supercritical racemic liquid, into subcritical D-rich and L-rich liquids. We determine the infinite-size critical temperature using the fourth-order Binder cumulant, and we show that the finite-size scaling behavior of the order parameter is compatible with the 3D Ising universality class. We also study the spontaneous D-rich to L-rich transition at a slightly subcritical temperature T ~ 0.985 Tc and our findings indicate that the free energy barrier for this transformation increases with system size as N^2/3 where N is the number of molecules, consistent with a surface-dominated phenomenon. The critical behavior observed herein suggests a mechanism for chirality selection in which a liquid of chiral molecules spontaneously forms a phase enriched in one of the two enantiomers as the temperature is lowered below the critical point. Furthermore, the increasing free energy barrier with system size indicates that fluctuations between the L-rich and D-rich phases are suppressed as the size of the system increases, trapping it in one of the two enantiomerically-enriched phases. Such a process could provide the basis for an alternative explanation for the origin of biological homochirality. We also conjecture the possibility of observing nucleation at subcritical temperatures under the action of a suitable chiral external field.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
This dataset contains all data relevant to a forthcoming publication in which we used molecular simulation methods to study the phase behavior of supercooled water. The dataset contains simulation input and output files, processed data files, and image files used to create all plots in the manuscript. Python analysis scripts are also included, including instructions for how to re-generate all plots in the manuscript.
Piaggi, Pablo M; Gartner, Thomas E; Car, Roberto; Debenedetti, Pablo G
Abstract:
The possible existence of a liquid-liquid critical point in deeply supercooled water has been a subject of debate in part due to the challenges associated with providing definitive experimental evidence. Pioneering work by Mishima and Stanley [Nature 392, 164 (1998) and Phys.~Rev.~Lett. 85, 334 (2000)] sought to shed light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the expected location of the liquid-liquid transition and its associated critical point. Based on the continuous or discontinuous changes in slope of the melting curves, Mishima suggested that the liquid-liquid critical point lies between the melting curves of ice III and ice V. Here, we explore this conjecture using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII using this model and find that the melting lines of all the studied ice polymorphs are supercritical and do not intersect the liquid-liquid transition locus. We also find a pronounced, yet continuous, change in slope of the melting lines upon crossing of the locus of maximum compressibility of the liquid. Finally, we analyze critically the literature in light of our findings, and conclude that the scenario in which melting curves are supercritical is favored by the most recent computational and experimental evidence. Thus, although the preponderance of experimental and computational evidence is consistent with the existence of a second critical point in water, the behavior of the melting lines of ice polymorphs does not provide strong evidence in support of this viewpoint, according to our calculations.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
Muniz, Maria Carolina; Gartner III, Thomas E.; Riera, Marc; Knight, Christopher; Yue, Shuwen; Paesani, Francesco; Panagiotopoulos, Athanassios Z.
Abstract:
This dataset contains all data (including input files, simulation trajectories as well as other data files and analysis scripts) related to the publication "Vapor-liquid equilibrium of water with the MB-pol many-body potential" by Muniz et al. in preparation (2021). In this work, we assessed the performance of the MB-pol many-body potential with respect to water's vapor-liquid equilibrium properties. Through the use of direct coexistence molecular dynamics, we calculated properties such as coexistence densities, surface tension, vapor pressures and enthalpy of vaporization. We found that MB-pol is able to predict these properties in good agreement with experimental data. The results attest to the chemical accuracy of MB-pol and its large range of application across water's phase diagram.
This dataset is a sequence of laser-induced fluorescence images of a dye injected in a channel flow with canopy-like stainless steel rods simulating a vegetation canopy stand. The data is acquired close to the channel bottom at z/h=0.2, where z is the height referenced to the channel bed and h is the canopy height. The dataset provides spatial distribution of scalar concentration in a plane parallel to the channel bed. The data has been used (but the data itself has not been published or available to the public) in previous work. The references are: Ghannam, K., Poggi, D., Porporato, A., & Katul, G. (2015). The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorology,157(3), 447–460. Ghannam, K, Poggi, D., Bou-Zeid, E., Katul, G. (2020). Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophysical Research Letters (accepted).
This distribution contains experimentally measured data for the extent of retained enzyme activity post thermal stressing for three distinct enzymes: glucose oxidase, lipase, and horseradish peroxidase. The data is used to form conclusions and develop machine learning models as reported in the publication "Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids" by Matthew Tamasi, Roshan Patel, Carlos Borca, Shashank Kosuri, Heloise Mugnier, Rahul Upadhya, N. Sanjeeva Murthy, Michael Webb*, and Adam Gormley. Details regarding the experimental protocols are reported in the aforementioned paper but are briefly discussed in the README.
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Data set for "Ocean emission of microplastic by bursting bubble jet drops." Two .csv files are provided: one for the size of a jet drop carrying microplastic, and another for the amount of microplastic captured by a jet drop.
Pacheco, Diego A; Thiberge, Stephan; Pnevmatikakis, Eftychios; Murthy, Mala
Abstract:
Sensory pathways are typically studied starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analysis of activity towards the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration, to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals, and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of spontaneous movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.