This archive contains spike trains simultaneously recorded from ganglion cells in the tiger salamander retina with a multi-electrode array while viewing a repeated natural movie clip. These data have been analyzed in previous papers, notably Puchalla et al. Neuron 2005 and Schneidman et al. Nature 2006.
Recent advances in experimental techniques have allowed the simultaneous recordings of
populations of hundreds of neurons, fostering a debate about the nature of the collective
structure of population neural activity. Much of this debate has focused on the
empirical findings of a phase transition in the parameter space of maximum entropy
models describing the measured neural probability distributions, interpreting this phase
transition to indicate a critical tuning of the neural code. Here, we instead focus on the
possibility that this is a first-order phase transition which provides evidence that the
real neural population is in a `structured', collective state. We show that this collective
state is robust to changes in stimulus ensemble and adaptive state. We find that the
pattern of pairwise correlations between neurons has a strength that is well within the
strongly correlated regime and does not require fine tuning, suggesting that this state is
generic for populations of 100+ neurons. We find a clear correspondence between the
emergence of a phase transition, and the emergence of attractor-like structure in the
inferred energy landscape. A collective state in the neural population, in which neural
activity patterns naturally form clusters, provides a consistent interpretation for our
results.
Berryman, Eleanor J.; Winey, J. M.; Gupta, Yogendra M.; Duffy, Thomas S.
Abstract:
Stishovite (rutile-type SiO2) is the archetype of dense silicates and may occur in post-garnet eclogitic rocks at lower-mantle conditions. Sound velocities in stishovite are fundamental to understanding its mechanical and thermodynamic behavior at high pressure and temperature. Here, we use plate-impact experiments combined with velocity interferometry to determine the stress, density, and longitudinal sound speed in stishovite formed during shock compression of fused silica at 44 GPa and above. The measured sound speeds range from 12.3(8) km/s at 43.8(8) GPa to 9.8(4) km/s at 72.7(11) GPa. The decrease observed at 64 GPa reacts a decrease in the shear modulus of stishovite, likely due to the onset of melting. By 72 GPa, the measured sound speed agrees with the theoretical bulk sound speed indicating loss of all shear stiffness due to complete melting. Our sound velocity results provide direct evidence for shock-induced melting, in agreement with previous pyrometry data.
Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
Abstract:
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
Monitoring the attention of others is fundamental to social cognition. Most of the literature on the topic assumes that our social cognitive machinery is tuned specifically to the gaze direction of others as a proxy for attention. This standard assumption reduces attention to an externally visible parameter. Here we show that this assumption is wrong and a deeper, more meaningful representation is involved. We presented subjects with two cues about the attentional state of a face: direction of gaze and emotional expression. We tested whether people relied predominantly on one cue, the other, or both. If the traditional view is correct, then the gaze cue should dominate. Instead, people employed a variety of strategies, some relying on gaze, some on expression, and some on an integration of cues. We also assessed people’s social cognitive ability using two, independent, standard tests. If the traditional view is correct, then social cognitive ability, as assessed by the independent tests, should correlate with the degree to which people successfully use the gaze cue to judge the attention state of the face. Instead, social cognitive ability correlated best with the degree to which people successfully integrated the cues together, instead of with the use of any one specific cue. The results suggest a rethink of a fundamental component of social cognition: monitoring the attention of others involves constructing a deep model that is informed by a combination of cues. Attention is a rich process and monitoring the attention of others involves a similarly rich representation.
Hill, K. W.; Gao, L.; Kraus, B. F.; Bitter, M.; Efthimion, P. C.; Pablant, N. A.; Schneider, M. B.; Thorn, D. B.; Chen, H.; Kauffman, R. L.; Liedahl, D. A.; MacDonald, M. J.; MacPhee, A. G.; Scott, H. A.; Stoupin, S.; Doron, R.; Stambulchik, E.; Maron, Y.; Lahmann, B.
Abstract:
Numerical data used to draw the figures in the manuscript
This distribution compiles numerous physical properties for 2,585 intrinsically disordered proteins (IDPs) obtained by coarse-grained molecular dynamics simulation. This combination comprises "Dataset A" as reported in "Featurization strategies for polymer sequence or composition design by machine learning" by Roshan A. Patel, Carlos H. Borca, and Michael A. Webb (DOI: 10.1039/D1ME00160D). The specific IDP sequences are sourced from version 9.0 of the DisProt database. The simulations were performed using the LAMMPS molecular dynamics engine. The interactions used for simulation are obtained from R. M. Regy , J. Thompson , Y. C. Kim and J. Mittal , Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins, Protein Sci., 2021, 1371 —1379.
This distribution contains experimentally measured data for the extent of retained enzyme activity post thermal stressing for three distinct enzymes: glucose oxidase, lipase, and horseradish peroxidase. The data is used to form conclusions and develop machine learning models as reported in the publication "Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids" by Matthew Tamasi, Roshan Patel, Carlos Borca, Shashank Kosuri, Heloise Mugnier, Rahul Upadhya, N. Sanjeeva Murthy, Michael Webb*, and Adam Gormley. Details regarding the experimental protocols are reported in the aforementioned paper but are briefly discussed in the README.
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J.-K.; Podesta, M.; Heidbrink, W. W.
Gilson, Erik; Lee, H.; Bortolon, A.; Choe, W.; Diallo, A.; Hong, S. H.; Lee, H. M.; Maingi, R.; Mansfield, D. K.; Nagy, A.; Park, S. H.; Song, I. W.; Song, J. I.; Yun, S. W.; Yoon, S. W.; Nazikian, R.
This dataset is a sequence of laser-induced fluorescence images of a dye injected in a channel flow with canopy-like stainless steel rods simulating a vegetation canopy stand. The data is acquired close to the channel bottom at z/h=0.2, where z is the height referenced to the channel bed and h is the canopy height. The dataset provides spatial distribution of scalar concentration in a plane parallel to the channel bed. The data has been used (but the data itself has not been published or available to the public) in previous work. The references are: Ghannam, K., Poggi, D., Porporato, A., & Katul, G. (2015). The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorology,157(3), 447–460. Ghannam, K, Poggi, D., Bou-Zeid, E., Katul, G. (2020). Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophysical Research Letters (accepted).
Bourrianne, Philippe; Chidzik, Stanley; Cohen, Daniel; Elmer, Peter; Hallowell, Thomas; Kilbaugh, Todd J.; Lange, David; Leifer, Andrew M.; Marlow, Daniel R.; Meyers, Peter D.; Normand, Edna; Nunes, Janine; Oh, Myungchul; Page, Lyman; Periera, Talmo; Pivarski, Jim; Schreiner, Henry; Stone, Howard A.; Tank, David W.; Thiberge, Stephan; Tully, Christopher
Abstract:
The detailed information on the design and construction of the Princeton Open Ventilation Monitor device and software are contained in this data repository. This information consists of the electrical design files, mechanical design files, bill of materials, human subject recording and analysis code, and a copy of the code repository for operating the patient monitors and central station.
A new model for prediction of electron density and pressure profile shapes on NSTX and NSTX-U has been developed using neural networks. The model has been trained and tested on measured profiles from experimental discharges during the first operational campaign of NSTX-U. By projecting profiles onto empirically derived basis functions, the model is able to efficiently and accurately reproduce profile shapes. In order to project the performance of the model to upcoming NSTX-U operations, a large database of profiles from the operation of NSTX is used to test performance as a function of available data. The rapid execution time of the model is well suited to the planned applications, including optimization during scenario development activities, and real-time plasma control. A potential application of the model to real-time profile estimation is demonstrated.
Active control of the toroidal current density profile is critical for the upgraded National Spherical Torus eXperiment device (NSTX-U) to maintain operation at the desired high-performance, MHD-stable, plasma regime. Initial efforts towards current density profile control have led to the development of a control-oriented, physics-based, plasma-response model, which combines the magnetic diffusion equation with empirical correlations for the kinetic profiles and the non-inductive current sources. The developed control-oriented model has been successfully tailored to the NSTX-U geometry and actuators. Moreover, a series of efforts have been made towards the design of model-based controllers, including a linear-quadratic-integral optimal control strategy that can regulate the current density profile around a prescribed target profile while rejecting disturbances. In this work, the tracking performance of the proposed current-profile optimal controller is tested in numerical simulations based on the physics-oriented code TRANSP. These high-fidelity closed-loop simulations, which are a critical step before experimental implementation and testing, are enabled by a flexible framework recently
developed to perform feedback control design and simulation in TRANSP.
Martin, James K; Sheehan, Joseph P; Bratton, Benjamin P; Moore, Gabriel M; Mateus, André; Li, Sophia Hsin-Jung; Kim, Hahn; Rabinowitz, Joshua D; Typas, Athanasios; Savitski, Mikhail M; Wilson, Maxwell Z; Gitai, Zemer
Abstract:
The rise of antibiotic resistance and declining discovery of new antibiotics have created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably-low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing MRSA persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrheae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.
This is the supplemental material for the manuscript "Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane" submitted to Fusion Engineering and Design. This material includes PDF writeups of the derivations of the axisymmetric extended plane strain model, the elastic properties smearing model, and 20+ MATLAB scripts and functions which implement the model and generate the figures in the paper.
Kiefer, Janik; Brunner, Claudia E.; Hansen, Martin O. L.; Hultmark, Marcus
Abstract:
This data set contains data of a NACA 0021 airfoil as it undergoes upward ramp-type pitching motions at high Reynolds numbers and low Mach numbers. The parametric study covers a wide range of chord Reynolds numbers, reduced frequencies and pitching geometries characterized by varying mean angle and angle amplitude. The data were acquired in the High Reynolds number Test Facility at Princeton University, which is a closed-loop wind tunnel that can be pressurized up to 23 MPa and allowed for variation of the chord Reynolds number over a range of 5.0 × 10^5 ≤ Re_c ≤ 5.5 × 10^6. Data were acquired using 32 pressure taps along the surface of the airfoil. The data are the phase-averaged results of 150 individual half-cycles for any given test case.
Brunner, Claudia E.; Kiefer, Janik; Hansen, Martin O. L.; Hultmark, Marcus
Abstract:
Reynolds number effects on the aerodynamics of the moderately thick NACA 0021 airfoil were experimentally studied by means of surface-pressure measurements. The use of a high-pressure wind tunnel allowed for variation of the chord Reynolds number over a range of 5.0 × 10^5 ≤ Re_c ≤ 7.9 × 10^6. The angle of attack was incrementally increased and decreased over a range of 0° ≤ alpha ≤ 40°, spanning both the attached and stalled regime at all Reynolds numbers. As such, attached and separated conditions, as well as the static stall and reattachment processes were studied. A fundamental change in the flow behaviour was observed around Re_c= 2.0 × 10^6. As the Reynolds number was increased beyond this value, the stall type gradually shifted from trailing-edge stall to leading-edge stall. The stall angle and the maximum lift coefficient increased with Reynolds number. Once the flow was separated, the separation point moved upstream and the suction peak decreased in magnitude with increasing Reynolds number. Two distinct types of hysteresis in reattachment were observed.
Data set used to train a Deep Potential (DP) model for crystalline and disordered TiO2 phases. Training data contain atomic forces, potential energy, atomic coordinates and cell tensor. Energy and forces were evaluated with the density functional SCAN, as implemented in Quantum-ESPRESSO. Atomic configurations of crystalline systems were generated by random perturbation of atomic positions (0-0.3 A) and cell tensor (1-10%). Amorphous TiO2 was explored by DP molecular dynamics (DPMD) at temperatures in the range 300−2500 K and pressure in the range 0−81 GPa.
Data set used to train a Deep Potential (DP) model for
subcritical and supercritical water. Training data contain atomic forces,
potential energy, atomic coordinates and cell tensor. Energy and forces
were evaluated with the density functional SCAN. Atomic configurations
were extracted from DP molecular dynamics at P = 250 bar and
T = 553, 623, 663, 733 and 823 K. Input files used to train the DP model
are also provided.
The injection of impurity granules into fusion research discharges can serve
as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule
sizes above a threshold, this can result in full control of the ELM cycle,
referred to as ELM pacing. For this research, we extend the investigation
to conditions where the natural ELM frequency is too high for ELM pacing to
be realized. Utilizing multiple sizes of lithium granules and classifying their
effects by granule size, we demonstrate that ELM mitigation through frequency
multiplication can be used at ELM triggering rates that nominally make ELM pacing
unrealizable. We find that above a size threshold, injected granules promptly
trigger ELMs and commensurately enhance the ELM frequency . Below this threshold
size, injection of an individual granule does not always lead to the prompt
triggering of an ELM; however, collective ablation in the edge pedestal region
does enhance the ELM frequency. Specifically, Li granules too small to individually
trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz;
collectively the granules were observed to enhance the natural ELM frequency up to
620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50%
decrease of the ELM size.