Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
Abstract:
A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
Muniz, Maria Carolina; Gartner III, Thomas E.; Riera, Marc; Knight, Christopher; Yue, Shuwen; Paesani, Francesco; Panagiotopoulos, Athanassios Z.
Abstract:
This dataset contains all data (including input files, simulation trajectories as well as other data files and analysis scripts) related to the publication "Vapor-liquid equilibrium of water with the MB-pol many-body potential" by Muniz et al. in preparation (2021). In this work, we assessed the performance of the MB-pol many-body potential with respect to water's vapor-liquid equilibrium properties. Through the use of direct coexistence molecular dynamics, we calculated properties such as coexistence densities, surface tension, vapor pressures and enthalpy of vaporization. We found that MB-pol is able to predict these properties in good agreement with experimental data. The results attest to the chemical accuracy of MB-pol and its large range of application across water's phase diagram.
O'Neill, Eric; Lark, Tyler; Xie, Yanhua; Basso, Bruno
Abstract:
Collection of the underlying spatially explicit data for Available Land for Cellulosic Biofuel Production: A Supply Chain Centered Comparison. Includes raw biomass yield data and soil carbon sequestration potential data for three types of marginal land for the USA midwest at the field level including field areas. Collection also includes raw land rasters for the three types of marginal land, model parameters for the MILP model used in the study, and results used to generate the figures in the paper.
Pan, Da; Gelfand, Ilya; Tao, Lei; Abraha, Michael; Sun, Kang; Guo, Xuehui; Chen, Jiquan; Robertson, G. Philip; Zondlo, Mark A.
Abstract:
This dataset contains spectroscopic simulations, experimental results for the 2202 cm-1 N2O absorption line, and N2O flux measurements shown in "A New Open-path Eddy Covariance Method for N2O and Other Trace Gases that Minimizes Temperature Corrections" by Da Pan, Ilya Gelfand, Lei Tao, Michael Abraha, Kang Sun, Xuehui Guo, Jiquan Chen, G. Philip Robertson, and Mark A. Zondlo. The HITRAN Application Programming Interface (HAPI) with HITRAN 2016 was used for spectroscopic simulations. Experiments were conducted to quantify H2O-broadened half-width at half maximum and validate spectroscopic simulations. N2O flux was measured with both eddy covariance and static chamber methods.
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
China is the world's largest carbon emitter and suffers from severe air pollution. About one million deaths in China were attributable to air pollution in 2017. Alternative energy vehicles (AEVs), e.g. electric, hydrogen fuel cell, and natural gas vehicles, can help achieve both carbon emission mitigation and air quality improvement. However, climate, air quality and health co-benefit of AEVs powered by deeply decarbonized electricity generation remain poorly quantified. Here, we conduct a quantitative integrated assessment of the air quality, health, carbon emission mitigation and economic benefits of AEV deployment as the electricity grid decarbonizes in China. We find population-weighted annual PM2.5 and summer O3 concentration can decrease as large as 5.7μgm−3 and 4.9ppb. Annual avoided premature mortalities and years of life lost resulting from improved ambient air pollution can be as large as ~329,000 persons and ~1,611,000 years. We thus show that maximizing climate, air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
Pereira, Talmo D.; Aldarondo, Diego E.; Willmore, Lindsay; Kislin, Mikhail; Wang, Samuel S.-H.; Murthy, Mala; Shaevitz, Joshua W.
Abstract:
Recent work quantifying postural dynamics has attempted to define the repertoire of behaviors performed by an animal. However, a major drawback to these techniques has been their reliance on dimensionality reduction of images which destroys information about which parts of the body are used in each behavior. To address this issue, we introduce a deep learning-based method for pose estimation, LEAP (LEAP Estimates Animal Pose). LEAP automatically predicts the positions of animal body parts using a deep convolutional neural network with as little as 10 frames of labeled data for training. This framework consists of a graphical interface for interactive labeling of body parts and software for training the network and fast prediction on new data (1 hr to train, 185 Hz predictions). We validate LEAP using videos of freely behaving fruit flies (Drosophila melanogaster) and track 32 distinct points on the body to fully describe the pose of the head, body, wings, and legs with an error rate of <3% of the animal's body length. We recapitulate a number of reported findings on insect gait dynamics and show LEAP's applicability as the first step in unsupervised behavioral classification. Finally, we extend the method to more challenging imaging situations (pairs of flies moving on a mesh-like background) and movies from freely moving mice (Mus musculus) where we track the full conformation of the head, body, and limbs.
Petsev, Nikolai D.; Nikoubashman, Arash; Latinwo, Folarin
Abstract:
Source code for our genetic algorithm optimization investigation of conglomerate and racemic chiral crystals. In this work, we address challenges in determining the stable structures formed by chiral molecules by applying the framework of genetic algorithms to predict the ground state crystal lattices formed by a chiral tetramer model. Using this code, we explore the relative stability and structures of the model’s conglomerate and racemic crystals, and extract a structural phase diagram for the stable Bravais crystal types in the zero-temperature limit.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
Piaggi, Pablo M; Gartner, Thomas E; Car, Roberto; Debenedetti, Pablo G
Abstract:
The possible existence of a liquid-liquid critical point in deeply supercooled water has been a subject of debate in part due to the challenges associated with providing definitive experimental evidence. Pioneering work by Mishima and Stanley [Nature 392, 164 (1998) and Phys.~Rev.~Lett. 85, 334 (2000)] sought to shed light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the expected location of the liquid-liquid transition and its associated critical point. Based on the continuous or discontinuous changes in slope of the melting curves, Mishima suggested that the liquid-liquid critical point lies between the melting curves of ice III and ice V. Here, we explore this conjecture using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII using this model and find that the melting lines of all the studied ice polymorphs are supercritical and do not intersect the liquid-liquid transition locus. We also find a pronounced, yet continuous, change in slope of the melting lines upon crossing of the locus of maximum compressibility of the liquid. Finally, we analyze critically the literature in light of our findings, and conclude that the scenario in which melting curves are supercritical is favored by the most recent computational and experimental evidence. Thus, although the preponderance of experimental and computational evidence is consistent with the existence of a second critical point in water, the behavior of the melting lines of ice polymorphs does not provide strong evidence in support of this viewpoint, according to our calculations.
Chronic hepatitis B (CHB), caused by hepatitis B virus (HBV), remains a major medical problem. HBV has a high propensity for progressing to chronicity and can result in severe liver disease, including fibrosis, cirrhosis and hepatocellular carcinoma. CHB patients frequently present with viral coinfection, including HIV and hepatitis delta virus. About 10% of chronic HIV carriers are also persistently infected with HBV which can result in more exacerbated liver disease. Mechanistic studies of HBV-induced immune responses and pathogenesis, which could be significantly influenced by HIV infection, have been hampered by the scarcity of immunocompetent animal models. Here, we demonstrate that humanized mice dually engrafted with components of a human immune system and a human liver supported HBV infection, which was partially controlled by human immune cells, as evidenced by lower levels of serum viremia and HBV replication intermediates in the liver. HBV infection resulted in priming and expansion of human HLA-restricted CD8+ T cells, which acquired an activated phenotype. Notably, our dually humanized mice support persistent coinfections with HBV and HIV which opens opportunities for analyzing immune dysregulation during HBV and HIV coinfection and preclinical testing of novel immunotherapeutics.