This dataset is affiliated with the publication https://doi.org/10.1007/s00348-022-03455-0. All of the data provided is necessary to reproduce the results with the aforementioned publication. The data in this repository is for the wake of a wind turbine at high Reynolds numbers. The data is mainly used for reproducing the statistics (deficit and variance profiles) and the phase averaged results.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
The item included here is a collection of wave profiles collected and presented in the accompanying paper: Rucks, M. J., Winey, J. M., Toyoda, T., Gupta, Y. M., & Duffy, T. S. (in review). "Shock compression of fluorapatite to 120 GPa" Submitted to Journal of Geophysical Research: Planets.
This dataset includes individual CIF files with the refined structure of fluorapatite under compression to 61 GPa. The structures have been discussed in detail in the accompanying manuscript "Single-crystal X-ray diffraction of fluorapatite to 61 GPa"
In this publication we provide the LAMMPS example files to reproduce simulations for the manuscript "A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water"
A comprehensive set of spectroscopic diagnostics is planned in the National Spherical Torus Experi- ment Upgrade to connect measurements of molybdenum and tungsten divertor sources to scrape-o↵ layer (SOL) and core impurity transport, supporting the installation of high-Z plasma facing compo- nents which is scheduled to begin with a row of molybdenum tiles. Imaging with narrow-bandpass interference filters and high-resolution spectroscopy will be coupled to estimate divertor impurity influxes. Vacuum ultraviolet and extreme ultraviolet spectrometers will allow connecting high-Z sources to SOL transport and core impurity content. The high-Z diagnostics suite complements the existing measurements for low-Z impurities (carbon and lithium), critical for the characterization of sputtering of high-Z materials.
Title:
Spontaneous multi-keV electron generation in a low-RF-power axisymmetric mirror machine
Abstract:
X-ray emission shows the existence of multi-keV electrons in low-temperature, low-power, capacitively-coupled RF-heated magnetic-mirror plasmas that also contain a warm (300 eV) minority electron population. Though these warm electrons are initially passing particles, we suggest that collisionless scattering -- mu non-conservation in the static vacuum field -- is responsible for a minority of them to persist in the mirror cell for thousands of transits during which time a fraction are energized to a characteristic temperature of 3 keV, with some electrons reaching energies above 30 keV. A heuristic model of the heating by a Fermi-acceleration-like mechanism is presented, with mu non-conservation in the static vacuum field as an essential feature.
This dataset contains supplementary materials for Chapter 4 and Chapter 5 of Yiheng Tao's PhD dissertation (2022). The dissertation’s abstract is provided here:
Carbon capture, utilization, and storage (CCUS) mitigates climate change by capturing carbon dioxide (CO2) emissions from large point sources, or CO2 from the ambient air, and subsequently reusing the captured CO2 or injecting it into deep geological formations for long-term and secure storage. Almost all current decarbonization pathways include large-scale CCUS, on the order of a billion tonnes (Gt) of CO2 captured and stored each year globally starting in 2030, yet the actual deployment has lagged far behind (around 0.04 Gt CO2 was captured in 2021). In this dissertation, I contribute to several aspects of largescale deployment of CCUS by (1) developing and applying efficient numerical models to simulate geological CO2 storage and (2) identifying key policies to address the bottlenecks of overall CCUS deployment. This dissertation concerns the United States, China, and the Belt and Road Initiative (BRI) region through research projects that are consistent with each location’s current development stage of CCUS.
Chapters 2 and 3 contain computational modeling studies. In Chapter 2, I develop a new series of vertical-equilibrium (VE) models in the dual-continuum modeling framework to simulate CO2 injection and migration in fractured geological formations. Those models are shown to be effective and efficient when properties of the formation allow for the VE assumption. In Chapter 3, I apply a VE model to simulate basin-scale CO2 injection in the Junggar Basin of Northwestern China. The results show that current regional emissions of more than 100 million tonnes of CO2 per year can be stored effectively, thereby confirming the great potential of the Junggar Basin for early CCUS deployment.
Chapters 4 and 5 contain policy analyses. In Chapter 4, I propose a dynamic system consisting of new CO2 pipelines and novel Allam-cycle power plants in the Central United States, and examine how government policies, including an extended Section 45Q tax credit, may improve the economic feasibility of this system. Lastly, in Chapter 5, I investigate and quantify CO2 emissions implications of power plant projects associated with the BRI. I also propose a “greenness ratio” to measure the level of environmental sustainability of BRI in the power sector.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples.
Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
The bitKlavier Grand consists of sample collections of a new Steinway D grand piano from nine different stereo mic images, with: 16 velocity layers, at every minor 3rd (starting at A0); Hammer release samples; Release resonance samples; Pedal samples. Release packages at 96k/24bit, 88.2k/24bit, 48k/24bit, 44.1k/16bit are available for various applications.
This dataset contains all the model output used to generate the figures and data reported in the article "Climate, soil organic layer, and nitrogen jointly drive forest development after fire in the North American boreal zone". The data was generated during spring 2015 using the a modified version of the Ecosystem Demography model version 2, provided as a supplement accompanying the article. The data was generated using the computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. The dataset contains a pdf Readme file which explains in detail how the data can be used. Users are recommended to go through this file before using the data.
These GROMACS trajectories show the existence of a critical point in deeply supercooled WAIL water. Also included is the code necessary to reproduce the figures in the corresponding paper from these trajectories. From this data the critical temperature, pressure, and density of the model can be found, and critical fluctuations in the deeply supercooled liquid can be directly observed (in a computer-simulation sense).
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Current sheet and open field lines with footpoints near the edge of the polar cap. The magnetic axis is inclined relative to the rotation axis by 60 degrees. Red
field lines originate on the north polar cap and green field lines in the right panel originate on the south polar cap. Purple and grey colors indicate positive and negative net
local charge density in the current sheet, which is shown between 1.2-2 light cylinder radii.
Current sheet and open field lines with footpoints near the edge of the polar cap. The magnetic axis is inclined relative to the rotation axis by 90 degrees. Red field lines originate on the north polar cap and green field lines in the right panel originate on the south polar cap. Purple and grey colors indicate positive and negative net local charge density in the current sheet, which is shown between 1.2-2 light cylinder radii.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moments of both
stars aligned with the rotation axis. The stars are not spinning, i.e., R_{LC,∗} = ∞.
Fields are by and large confined
to the half of the magnetosphere closer to their source star.
This movie shows the corotating field pattern as the orbit progresses.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moments of both
stars aligned with the rotation axis. The stars are spinning
rapidly at ∼ ms periods, with R_{LC,∗}/R_∗ = 2.7. Stellar spin
winds fields backwards toroidally, and they can propagate to
the far side of the magnetosphere closer to the opposing star.
This movie shows the corotating field pattern as the orbit progresses.
The Magnetospheric Multiscale (MMS) mission has given us unprecedented access to high cadence particle and field data of magnetic reconnection at Earth's magnetopause. MMS first passed very near an X-line on 16 October 2015, the Burch event, and has since observed multiple X-line crossings. Subsequent 3D particle-in-cell (PIC) modeling efforts of and comparison with the Burch event have revealed a host of novel physical insights concerning magnetic reconnection, turbulence induced particle mixing, and secondary instabilities. In this study, we employ the Gkeyll simulation framework to study the Burch event with different classes of extended, multi-fluid magnetohydrodynamics (MHD), including models that incorporate important kinetic effects, such as the electron pressure tensor, with physics-based closure relations designed to capture linear Landau damping. Such fluid modeling approaches are able to capture different levels of kinetic physics in global simulations and are generally less costly than fully kinetic PIC. We focus on the additional physics one can capture with increasing levels of fluid closure refinement via comparison with MMS data and existing PIC simulations. In particular, we find that the ten-moment model well captures the agyrotropic structure of the pressure tensor in the vicinity of the X-line and the magnitude of anisotropic electron heating observed in MMS and PIC simulations. However, the ten-moment model has difficulty resolving the lower hybrid drift instability, which has been observed to plays a fundamental role in heating and mixing electrons in the current layer.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moment of one
star aligned with the rotation axis, and the magnetic moment of the other star tilted and antialigned with the rotation axis.
The stars are not spinning, i.e., R_{LC,∗} =
∞. Fields from each star encircle the other star and force
fields coming off the second star backwards toroidally.
This movie shows the corotating field pattern as the orbit progresses.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moment of one star
aligned with the rotation axis, and the magnetic moment of the
other star tilted and antialigned with the rotation axis. The
stars are spinning rapidly at ∼ ms periods, with R_{LC,∗} /R_∗ =
2.7.
Stellar spin winds fields backwards toroidally.
This movie shows the corotating field pattern as the orbit progresses.
This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO2 leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO2 and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO2 fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competitiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO2 leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.
Complete dataset of pore water chemical parameters measured at the Marsh Resource Meadowlands Mitigation Bank, a tidal marsh within the New Jersey Meadowlands, from March 2011 to April 2012. Analytes measured include dissolved methane, sulfate, dissolved organic carbon, temperature, salinity, and pH. Measurements were conducted using porewater dialysis samplers, and water was sampled from the surface to a depth of 60 cm.
This dataset contains all the data, model and MATLAB codes used to generate the figures and data reported in the article (DOI: 10.1002/2014JD022278). The data was generated during September 2013 and February 2014 using the Ocean-Land-Atmosphere Model also provided with this package. The data was generated using the computational resources supported by the PICSciE OIT High Performance Computing Center and Visualization Laboratory at Princeton University. The dataset contains a pdf Readme file which explains in detail how the data can be used. Users are recommended to go through this file before using the data.
This movie shows the dynamical behavior of field lines seeded on one of the stars. We find
a clear cyclical process operating in the magnetosphere. First, field lines from one star can attach to the second star. Second, as the orbit progresses these field lines
develop twist and are expelled outward past the second
star as closed loops. Third, these loops open up to infinity and then reconnect on the far side of the first star
opposite to the second. Fourth, the orbital motion will
bring the second star back into contact with the closed
loops, and they reattach to the second star.
A subset of the Fermi-LAT public data for use with NPTFit:
https://github.com/bsafdi/NPTFit
The data here is for use with the Jupyter example notebooks provided with the
main code. Details of the files provided are given below. All files are provided
as numpy arrays binned as nside=128 HEALPix maps.
For the full public data, see:
http://fermi.gsfc.nasa.gov/ssc/data/access/
Dielectric tensor for crystalline graphite from X-ray to microwave frequencies, as discussed in the paper "Graphite Revisited" (Draine 2016, Astrophysical Journal, in press). Cross sections for absorption and scattering by graphite spheres and spheroids are also tabulated, as well as Planck-averaged cross sections for absorption and scattering of radiation with a Planck spectrum.
Force-driven parallel shear flow in a spatially periodic domain is shown to be linearly unstable
with respect to both the Reynolds number and the domain aspect ratio. This finding is confirmed
by computer simulations, and a simple expression is derived to determine stable flow conditions.
Periodic extensions of Couette and Poiseuille flows are unstable at Reynolds numbers two orders
of magnitude smaller than their aperiodic equivalents because the periodic boundaries impose
fundamentally different constraints. This instability has important implications for designing computational models of nonlinear dynamic processes with periodicity.
The data are 4554 light curves derived from images taken of the globular cluster M4 by the Kepler space telescope during the K2 portion of its mission, specifically during Campaign 2 of that mission, which occurred in 2014. A total of 3856 images were taken over approximately three months at a cadence of approximately half an hour. The purpose of these observations was to find stars and other objects that vary in brightness over time --- variable stars. Also included is a table with associated information for each of the 4554 objects and their light curves.
This is the dataset for the plots presented in the article "CO2-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow."
Movies of relativistic reconnection and particle acceleration in relativistic reconnection accompanying the article "Relativistic Reconnection: an Efficient Source of Nonthermal Particles" by Lorenzo Sironi and Anatoly Spitkovsky.
Ant colonies regulate activity in response to changing conditions without using centralized control. Harvester ant colonies forage in the desert for seeds, and their regulation of foraging manages a tradeoff between spending and obtaining water. Foragers lose water while outside in the dry air, but the colony obtains water by metabolizing the fats in the seeds they eat. Previous work shows that the rate at which an outgoing forager leaves the nest depends on its recent experience of brief antennal contact with returning foragers that carry a seed. We examine how this process can yield foraging rates that are robust to uncertainty and responsive to temperature and humidity across minutes to hour-long timescales. To explore possible mechanisms, we develop a low-dimensional analytical model with a small number of parameters that captures observed foraging behavior. The model uses excitability dynamics to represent response to interactions inside the nest and a random delay distribution to represent foraging time outside the nest. We show how feedback of outgoing foragers returning to the nest stabilizes the incoming and outgoing foraging rates to a common value determined by the ``volatility’’ of available foragers. The model exhibits a critical volatility above which there is sustained foraging at a constant rate and below which there is cessation of foraging. To explain how the foraging rates of colonies adjust to temperature and humidity, we propose a mechanism that relies on foragers modifying their volatility after they leave the nest and get exposed to the environment. Our study highlights the importance of feedback in the regulation of foraging activity and points to modulation of volatility as a key to explaining differences in foraging activity in response to conditions and across colonies. Our results present opportunities for generalization to other contexts and systems with excitability and feedback across multiple timescales.
This is the raw experimental dataset and the corresponding code to reproduce plots from the paper "Shear-induced migration of confined flexible fibers".