Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
Abstract:
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
Kim, Donghoon; Tracy, Sally J; Smith, Raymond F; Gleason, Arianna E; Bolme, Cindy A; Prakapenka, Vitali B; Appel, Karen; Speziable, Sergio; Wicks, June K; Berryman, Eleanor J; Han, Sirus K; Schoelmerich, Markus O; Lee, Hae Ja; Nagler, Bob; Cunningham, Eric F; Akin, Minta C; Asimow, Paul D; Eggert, Jon H; Duffy, Thomas S
We provide all the test data and corresponding predictions for our paper, “Practical Fluorescence Reconstruction Microscopy for High-Content Imaging”. Please refer to the Methods section in this paper for experimental details. For each experimental condition, we provide the input transmitted-light images (either phase contrast or DIC), the ground truth fluorescence images, and the output predicted fluorescence images which should reconstruct the ground truth fluorescence images.