Zhou, Mi; Peng, Liqun; Zhang, Lin; Mauzerall, Denise L.
Abstract:
This dataset is created for the paper titled 'Environmental Benefits and Household Costs of Clean Heating Options in Northern China' and published on Nature Sustainability. Based on a 2015 regional anthropogenic emission inventory (base case), we propose seven counterfactual scenarios in which all 2015 residential solid fuel heating in northern China switches to one of the following non-district heating options: clean coal with improved stoves (CCIS), natural gas heaters (NGH), resistance heaters (RH), or air-to-air heat pumps (AAHP). This dataset provides the following gridded information for the base case and each clean heating scenario: (1) annual residential heating emissions for PM2.5/NOx/SO2; (2) monthly mean surface PM2.5 concentrations from the WRF-Chem model; (3) annual PM2.5-related premature deaths calculated by the GEMM model; (4) 2015 population in China; (5) mask for provinces in China; (6) longitude and latitude of each grid center.
Chen, Xu; Li, Zhongshu; Gallagher, Kevin P.; Mauzerall, Denise L.
Abstract:
Power sector decarbonization requires a fundamental redirection of global finance from fossil fuel infrastructure towards low carbon technologies. Bilateral finance plays an important role in the global energy transition to non-fossil energy, but an understanding of its impact is limited. Here, for the first time, we compare the influence of overseas finance from the three largest economies – United States, China, and Japan – on power generation development beyond their borders and evaluate the associated long-term CO2 emissions. We construct a new dataset of Japanese and U.S. overseas power generation finance between 2000-2018 by analyzing their national development finance institutions’ press releases and annual reports and tracking their foreign direct investment at the power plant level. Synthesizing this new data with previously developed datasets for China, we find that the three countries’ overseas financing concentrated in fossil fuel power technologies over the studied period. Financing commitments from China, Japan, and the United States facilitated 101 GW, 95 GW, and 47 GW overseas power capacity additions, respectively. The majority of facilitated capacity additions are fossil fuel plants (64% for China, 87% for Japan, and 66% for the United States). Each of the countries’ contributions to non-hydro renewable generation was less than 15% of their facilitated capacity additions. Together, we estimate that overseas fossil fuel power financing through 2018 from these three countries will lock in 24 Gt CO2 emissions by 2060. If climate targets are to be met, replacing bilateral fossil fuel financing with financing of renewable technologies is crucial.
The carbon isotopic (δ13C) composition of shallow-water carbonates often is interpreted to reflect the δ13C of the global ocean and is used as a proxy for changes in the global carbon cycle. However, local platform processes, in addition to meteoric and marine diagenesis, may decouple carbonate δ13C from that of the global ocean. To shed light on the extent to which changing sediment grain composition may produce δ13C shifts in the stratigraphic record, we present new δ13C measurements of benthic foraminifera, solitary corals, calcifying green algae, ooids, coated grains, and lime mud from the modern Great Bahama Bank (GBB). This survey of a modern carbonate environment reveals δ13C variability comparable to the largest δ13C excursions in the last two billion years of Earth history.
The history of organismal evolution, seawater chemistry, and paleoclimate is recorded in layers of carbonate sedimentary rock. Meter-scale cyclic stacking patterns in these carbonates often are interpreted as representing sea level change. A reliable sedimentary proxy for eustasy would be profoundly useful for reconstructing paleoclimate, since sea level responds to changes in temperature and ice volume. However, the translation from water depth to carbonate layering has proven difficult, with recent surveys of modern shallow water platforms revealing little correlation between carbonate facies (i.e., grain size, sedimentary bed forms, ecology) and water depth. We train a convolutional neural network with satellite imagery and new field observations from a 3,000 km2 region northwest of Andros Island (Bahamas) to generate a facies map with 5 m resolution. Leveraging a newly-published bathymetry for the same region, we test the hypothesis that one can extract a signal of water depth change, not simply from individual facies, but from sequences of facies transitions analogous to vertically stacked carbonate strata. Our Hidden Markov Model (HMM) can distinguish relative sea level fall from random variability with ∼90% accuracy. Finally, since shallowing-upward patterns can result from local (autogenic) processes in addition to forced mechanisms such as eustasy, we search for statistical tools to diagnose the presence or absence of external forcings on relative sea level. With a new data-driven forward model that simulates how modern facies mosaics evolve to stack strata, we show how different sea level forcings generate characteristic patterns of cycle thicknesses in shallow carbonates, providing a new tool for quantitative reconstruction of ancient sea level conditions from the geologic record.
The prevalence of ooids in the stratigraphic record, and their association with shallow-water carbonate environments, make ooids an important paleoenvironmental indicator. Recent advances in the theoretical understanding of ooid morphology, along with empirical studies from Turks and Caicos, Great Salt Lake, and The Bahamas, have demonstrated that the morphology of ooids is indicative of depositional environment and hydraulic conditions. To apply this knowledge from modern environments to the stratigraphic record of Earth history, researchers measure the size and shape of lithified ooids on two-dimensional surfaces (i.e., thin sections or polished slabs), often assuming that random 2D slices intersect the nuclei and that the orientation of the ooids is known. Here we demonstrate that these assumptions rarely are true, resulting in errors of up to 35% on metrics like major axis length. We present a method for making 3D reconstructions by serial grinding and imaging, which enables accurate measurement of the morphology of individual ooids within an oolite, as well as the sorting and porosity of a sample. We also provide three case studies that use the morphology of ooids in oolites to extract environmental information. Each case study demonstrates that 2D measurements can be useful if the environmental signal is large relative to the error from 2D measurements. However, 3D measurements substantially improve the accuracy and precision of environmental interpretations. This study focuses on oolites, but errors from 2D measurements are not unique to oolites; this method can be used to extract accurate grain and porosity measurements from any lithified granular sample.
Muniz, Maria Carolina; Gartner III, Thomas E.; Riera, Marc; Knight, Christopher; Yue, Shuwen; Paesani, Francesco; Panagiotopoulos, Athanassios Z.
Abstract:
This dataset contains all data (including input files, simulation trajectories as well as other data files and analysis scripts) related to the publication "Vapor-liquid equilibrium of water with the MB-pol many-body potential" by Muniz et al. in preparation (2021). In this work, we assessed the performance of the MB-pol many-body potential with respect to water's vapor-liquid equilibrium properties. Through the use of direct coexistence molecular dynamics, we calculated properties such as coexistence densities, surface tension, vapor pressures and enthalpy of vaporization. We found that MB-pol is able to predict these properties in good agreement with experimental data. The results attest to the chemical accuracy of MB-pol and its large range of application across water's phase diagram.