Vecchi, Gabriel A.; Landsea, Christopher; Zhang, Wei; Villarini, Gabriele; Knutson, Thomas
Abstract:
These are the data and scripts supporting the manuscript: Vecchi, Landsea, Zhang, Villarini and Knutson (2021): Changes in Atlantic Major Hurricane Frequency Since the Late-19th Century. Nature Communications.
Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
Abstract:
Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.
This setup mimics ice lying above the drainage system. In the experiment, a fluid-filled blister is generated via liquid injection into the interface between a transparent elastic layer and a porous substrate. After injection of liquid, the fluid permeates from the blister through the porous substrate, the blister volume V(t) relaxes exponentially with time. Our lab experiments show that varying the permeability of the porous substrate k significantly impacts the relaxation timescale in the experiments.
The dataset contains the model file for the Global Adjoint Tomography Model 25 (GLAD-M25). The model file contains parameters defined on the spectral-element mesh and is recommend to be used in SPECFEM3D GLOBE for seismic wave simulation at the global scale.
Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes, such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co- and counter-propagating CAEs and GAEs are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive. Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in omega/omega_{ci} and k_{||}/kperp, which are often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible. Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX observations of cntr-GAEs.
China is the world's largest carbon emitter and suffers from severe air pollution. About one million deaths in China were attributable to air pollution in 2017. Alternative energy vehicles (AEVs), e.g. electric, hydrogen fuel cell, and natural gas vehicles, can help achieve both carbon emission mitigation and air quality improvement. However, climate, air quality and health co-benefit of AEVs powered by deeply decarbonized electricity generation remain poorly quantified. Here, we conduct a quantitative integrated assessment of the air quality, health, carbon emission mitigation and economic benefits of AEV deployment as the electricity grid decarbonizes in China. We find population-weighted annual PM2.5 and summer O3 concentration can decrease as large as 5.7μgm−3 and 4.9ppb. Annual avoided premature mortalities and years of life lost resulting from improved ambient air pollution can be as large as ~329,000 persons and ~1,611,000 years. We thus show that maximizing climate, air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
An electron beam is detected by a 1D floating potential probe array in a relatively high density (10e12 − 10e13 cm−3) and low temperature (∼ 5 eV) plasma of the Magnetic Reconnection Experiment (MRX). Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
In our study, we compare the three dimensional (3D) morphologic characteristics of Earth's first reef-building animals (archaeocyath sponges) with those of modern, photosynthetic corals. Within this repository are the 3D image data products for both groups of animals. The archaeocyath images were produced through serial grinding and imaging with the Grinding, Imaging, and Reconstruction Instrument at Princeton University. The images in this repository are the downsampled data products used in our study, and the full resolution (>2TB) image stacks are available upon request from the author. For the coral image data, the computed tomography (CT) images of all samples are included at full resolution. Also included in this repository are the manual and automated outline coordinates of the archaeocyath and coral branches, which can be directly used for morphological study.
The dataset is a compilation of real time ground observations of criteria pollutants monitored at the Central Pollution Control Board (CPCB) continuous stations in India, from 2015-2019. Pollutants included are PM2.5, PM10, SO2, NO2 and O3 and are archived at every hour for all stations across India.
Since 1850 the concentration of atmospheric methane (CH4), a potent greenhouse gas, has more than doubled. Recent studies suggest that emission inventories may be missing sources and underestimating emissions. To investigate whether offshore oil and gas platforms leak CH4 during normal operation, we measured CH4 mole fractions around eight oil and gas production platforms in the North Sea which were neither flaring gas nor off-loading oil. We use the measurements from summer 2017, along with meteorological data, in a Gaussian plume model to estimate CH4 emissions from each platform. We find CH4 mole fractions of between 11 and 370 ppb above background concentrations downwind of the platforms measured, corresponding to a median CH4 emission of 6.8 g CH4 s-1 for each platform, with a range of 2.9 to 22.3 g CH4 s-1. When matched to production records, during our measurements individual platforms lost between 0.04% and 1.4% of gas produced with a median loss of 0.23%. When the measured platforms are considered collectively, (i.e. the sum of platforms’ emission fluxes weighted by the sum of the platforms’ production), we estimate the CH4 loss to be 0.19% of gas production. These estimates are substantially higher than the emissions most recently reported to the National Atmospheric Emission Inventory (NAEI) for total CH4 loss from United Kingdom platforms in the North Sea. The NAEI reports CH4 losses from the offshore oil and gas platforms we measured to be 0.13% of gas production, with most of their emissions coming from gas flaring and offshore oil loading, neither of which were taking place at the time of our measurements. All oil and gas platforms we observed were found to leak CH4 during normal operation and much of this leakage has not been included in UK emission inventories. Further research is required to accurately determine total CH4 leakage from all offshore oil and gas operations and to properly include the leakage in national and international emission inventories.
Zhou, Mi; Peng, Liqun; Zhang, Lin; Mauzerall, Denise L.
Abstract:
This dataset is created for the paper titled 'Environmental Benefits and Household Costs of Clean Heating Options in Northern China' and published on Nature Sustainability. Based on a 2015 regional anthropogenic emission inventory (base case), we propose seven counterfactual scenarios in which all 2015 residential solid fuel heating in northern China switches to one of the following non-district heating options: clean coal with improved stoves (CCIS), natural gas heaters (NGH), resistance heaters (RH), or air-to-air heat pumps (AAHP). This dataset provides the following gridded information for the base case and each clean heating scenario: (1) annual residential heating emissions for PM2.5/NOx/SO2; (2) monthly mean surface PM2.5 concentrations from the WRF-Chem model; (3) annual PM2.5-related premature deaths calculated by the GEMM model; (4) 2015 population in China; (5) mask for provinces in China; (6) longitude and latitude of each grid center.
Numerical data is tabulated for all plots (Figures 2, 3a-b, 4-89, S1, S4a-b,d, S5a-b,d, S6-S156) and included as separate spreadsheets categorized by figure in a .zip file in the Supplementary Material. Error bars in Figure 4 show the spread of data observed for 4 and 5 trials on independent samples for MIL-101 and MOF-235, respectively. Figure 6a shows the average of triplicate filtrate test conversions with error propagated based on this spread. Figures 6b and S165 error bars on rate constants are determined based on propagated conversion uncertainty for independent trials and extracted standard deviations of pseudo-first order rate constants from linearized plots. Error bars on other plots represent propagation of experimental uncertainty on single trials.
This dataset contains input files, training data and other files related to the machine learning models developed during the work by Muniz et al. In this work, we construct machine learning models based on the MB-pol many-body model. We find that the training set should include cluster configurations as well as liquid phase configurations in order to accurately represent both liquid and VLE properties. The results attest for the ability of machine learning models to accurately represent many-body potentials and provide an efficient avenue for water simulations.
Pacheco, Diego A; Thiberge, Stephan; Pnevmatikakis, Eftychios; Murthy, Mala
Abstract:
Sensory pathways are typically studied starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analysis of activity towards the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration, to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals, and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of spontaneous movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Magnetic reconnection is a fundamental process at work in laboratory, space and astrophysical plasmas, in which magnetic field lines change their topology and convert magnetic energy to plasma particles by acceleration and heating. One of the most important problems in reconnection research has been to understand why reconnection occurs so much faster than predicted by MHD theory. Following the recent pedagogical review of this subject [M. Yamada, R. Kulsrud, and H. Ji, Rev. Mod. Phys. {\bf 82}, 603 (2010)], this paper presents a review of more recent discoveries and findings in the research of fast magnetic reconnection in laboratory, space, and astrophysical plasmas. In spite of the huge difference in physical scales, we find remarkable commonality between the characteristics of the magnetic reconnection in laboratory and space plasmas. In this paper, we will focus especially on the energy flow, a key feature of the reconnection process. In particular the experimental results on the energy conversion and partitioning in a laboratory reconnection layer [M. Yamada {\it et al.}, Nat. Commu. {\bf 5}, 4474 (2014)] are discussed and compared with quantitative estimates based on two-fluid analysis. In the Magnetic Reconnection Experiment (MRX), we find that energy deposition to electrons is localized near the X-point and is mostly from the electric field component perpendicular to the magnetic field. The mechanisms of ion acceleration and heating are also identified and a systematic and quantitative study on the inventory of converted energy within a reconnection layer with a well-defined but variable boundary. The measured energy partition in a reconnection region of similar effective size ($L \approx$ 3 ion skin depths) of the Earth's magneto-tail [J. Eastwood {\it et al.}, Phys. Rev. Lett. {\bf 110}, 225001 (2013)] is notably consistent with our laboratory results. Finally, to study the global aspects of magnetic reconnection, we have carried out a laboratory experiment on the stability criteria for solar flare eruptions, including {\textquotedblleft}storage and release{\textquotedblright} mechanisms of magnetic energy. We show that toroidal magnetic flux generated by magnetic relaxation (reconnection) processes generates a new stabilizing force which prevents plasma eruption. This result has lead us to discovery of a new stabilizing force for solar flares [C. E. Myers {\it et al.}, Nature {\bf 528}, 526 (2015)]
This dataset contains example input files, training data sets and potential files related to the publication "First-principles-based Machine Learning Models for Phase Behavior and Transport Properties of CO2." by Mathur et al (2023). In this work, we developed machine learning models for CO2 based on different exchange-correlation DFT functionals. We assessed their performance on liquid densities, vapor-liquid equilibrium and transport properties.
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
Non-axisymmetric magnetic fields arising in a tokamak either by external or internal perturbations can induce complex non-ideal MHD responses in their resonant surfaces while remaining ideally evolved elsewhere. This layer response can be characterized in a linear regime by a single parameter called the inner-layer Delta, which enables outer-layer matching and the prediction of torque balance to non-linear island regimes. Here, we follow strictly one of the most comprehensive analytic treatments including two-fluid and drift MHD effects and keep the fidelity of the formulation by incorporating the numerical method based on the Riccati transformation when quantifying the inner-layer Delta. The proposed scheme reproduces not only the predicted responses in essentially all asymptotic regimes but also with continuous transitions as well as improved accuracies. In particular, the Delta variations across the inertial regimes with viscous or semi-collisional effects have been further resolved, in comparison with additional analytic solutions. The results imply greater shielding of the electromagnetic torque at the layer than what would be expected by earlier work when the viscous or semi-collisional effects can compete against the inertial effects, and also due to the intermediate regulation by kinetic Alfven wave resonances as rotation slows down. These are important features that can alter the nonaxisymmetric plasma responses including the field penetration by external fields or island seeding process in rotating tokamak plasmas.
Fractures in geological formations may enable migration of environmentally relevant fluids, as in leakage of CO2 through caprocks in geologic carbon sequestration. We investigated geochemically induced alterations of fracture geometry in Indiana Limestone specimens. Experiments were the first of their kind, with periodic high-resolution imaging using X-ray computed tomography (xCT) scanning while maintaining high pore pressure (100 bar). We studied two CO2-acidified brines having the same pH (3.3) and comparable thermodynamic
disequilibrium but different equilibrated pressures of CO2 (PCO2 values of 12 and 77 bar). High-PCO2 brine has a faster calcite dissolution kinetic rate because of the accelerating effect of carbonic acid. Contrary to expectations, dissolution extents were comparable in the two experiments. However, progressive xCT
images revealed extensive channelization for high PCO2, explained by strong positive feedback between ongoing flow and reaction. The pronounced channel increasingly directed flow to a small region of the fracture, which explains why the overall dissolution was lower than expected. Despite this, flow simulations revealed large increases in permeability in the high-PCO2 experiment. This study shows that the permeability evolution of dissolving fractures will be larger for faster-reacting fluids. The overall mechanism is not because more rock dissolves, as would be commonly assumed, but because of accelerated fracture channelization.
Geochemical and geomechanical perturbations of the subsurface caused by the injection of fluids present the risk of leakage and seismicity. This study investigated how flow of acidic fluids affects hydraulic and frictional properties of fractures using experiments with 3.8 cm-long specimens of Eagle Ford shale, a laminated shale with carbonate-rich strata. In low-pressure flow cells, one set of samples was exposed to an acidic brine and another set was exposed to a neutral brine. X-ray computed tomography and x-ray fluorescence analysis revealed that samples exposed to the acidic brine were calcite-depleted and had developed a porous altered layer, while the other set showed little evidence of alteration. After reaction, samples were compacted and sheared in a triaxial cell that supplied normal stress and differential pore pressure at prescribed sliding velocities, independently measuring friction and permeability. During the initial compaction, the porous altered layer collapsed into fine particles that filled the fracture aperture. This effectively impeded flow and sealed the fracture, resulting in a decrease in fracture permeability by 1 to 2 orders of magnitude relative to the compressed unaltered fractures. During shear, the collapsed layer of fine-grained particles prevented the formation of interlocking micro-asperities resulting in lower frictional strength. With regard to subsurface risks, this study showcases how coupled geochemical and geomechanical processes could favorably seal fractures to inhibit leakage, but also could increase the likelihood of induced seismicity. These findings have important implications for geological carbon sequestration, pressurized fluid energy storage, geothermal energy, and other subsurface technologies.
Understanding the condensed-phase behavior of chiral molecules is important in biology, as well as in a range of technological applications, such as the manufacture of pharmaceuticals. Here, we use molecular dynamics simulations to study a chiral four-site molecular model that exhibits a second-order symmetry-breaking phase transition from a supercritical racemic liquid, into subcritical D-rich and L-rich liquids. We determine the infinite-size critical temperature using the fourth-order Binder cumulant, and we show that the finite-size scaling behavior of the order parameter is compatible with the 3D Ising universality class. We also study the spontaneous D-rich to L-rich transition at a slightly subcritical temperature T ~ 0.985 Tc and our findings indicate that the free energy barrier for this transformation increases with system size as N^2/3 where N is the number of molecules, consistent with a surface-dominated phenomenon. The critical behavior observed herein suggests a mechanism for chirality selection in which a liquid of chiral molecules spontaneously forms a phase enriched in one of the two enantiomers as the temperature is lowered below the critical point. Furthermore, the increasing free energy barrier with system size indicates that fluctuations between the L-rich and D-rich phases are suppressed as the size of the system increases, trapping it in one of the two enantiomerically-enriched phases. Such a process could provide the basis for an alternative explanation for the origin of biological homochirality. We also conjecture the possibility of observing nucleation at subcritical temperatures under the action of a suitable chiral external field.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
This dataset is affiliated with the publication https://doi.org/10.1007/s00348-022-03455-0. All of the data provided is necessary to reproduce the results with the aforementioned publication. The data in this repository is for the wake of a wind turbine at high Reynolds numbers. The data is mainly used for reproducing the statistics (deficit and variance profiles) and the phase averaged results.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
The item included here is a collection of wave profiles collected and presented in the accompanying paper: Rucks, M. J., Winey, J. M., Toyoda, T., Gupta, Y. M., & Duffy, T. S. (in review). "Shock compression of fluorapatite to 120 GPa" Submitted to Journal of Geophysical Research: Planets.
This dataset includes individual CIF files with the refined structure of fluorapatite under compression to 61 GPa. The structures have been discussed in detail in the accompanying manuscript "Single-crystal X-ray diffraction of fluorapatite to 61 GPa"
A comprehensive set of spectroscopic diagnostics is planned in the National Spherical Torus Experi- ment Upgrade to connect measurements of molybdenum and tungsten divertor sources to scrape-o↵ layer (SOL) and core impurity transport, supporting the installation of high-Z plasma facing compo- nents which is scheduled to begin with a row of molybdenum tiles. Imaging with narrow-bandpass interference filters and high-resolution spectroscopy will be coupled to estimate divertor impurity influxes. Vacuum ultraviolet and extreme ultraviolet spectrometers will allow connecting high-Z sources to SOL transport and core impurity content. The high-Z diagnostics suite complements the existing measurements for low-Z impurities (carbon and lithium), critical for the characterization of sputtering of high-Z materials.
Title:
Spontaneous multi-keV electron generation in a low-RF-power axisymmetric mirror machine
Abstract:
X-ray emission shows the existence of multi-keV electrons in low-temperature, low-power, capacitively-coupled RF-heated magnetic-mirror plasmas that also contain a warm (300 eV) minority electron population. Though these warm electrons are initially passing particles, we suggest that collisionless scattering -- mu non-conservation in the static vacuum field -- is responsible for a minority of them to persist in the mirror cell for thousands of transits during which time a fraction are energized to a characteristic temperature of 3 keV, with some electrons reaching energies above 30 keV. A heuristic model of the heating by a Fermi-acceleration-like mechanism is presented, with mu non-conservation in the static vacuum field as an essential feature.
This dataset contains supplementary materials for Chapter 4 and Chapter 5 of Yiheng Tao's PhD dissertation (2022). The dissertation’s abstract is provided here:
Carbon capture, utilization, and storage (CCUS) mitigates climate change by capturing carbon dioxide (CO2) emissions from large point sources, or CO2 from the ambient air, and subsequently reusing the captured CO2 or injecting it into deep geological formations for long-term and secure storage. Almost all current decarbonization pathways include large-scale CCUS, on the order of a billion tonnes (Gt) of CO2 captured and stored each year globally starting in 2030, yet the actual deployment has lagged far behind (around 0.04 Gt CO2 was captured in 2021). In this dissertation, I contribute to several aspects of largescale deployment of CCUS by (1) developing and applying efficient numerical models to simulate geological CO2 storage and (2) identifying key policies to address the bottlenecks of overall CCUS deployment. This dissertation concerns the United States, China, and the Belt and Road Initiative (BRI) region through research projects that are consistent with each location’s current development stage of CCUS.
Chapters 2 and 3 contain computational modeling studies. In Chapter 2, I develop a new series of vertical-equilibrium (VE) models in the dual-continuum modeling framework to simulate CO2 injection and migration in fractured geological formations. Those models are shown to be effective and efficient when properties of the formation allow for the VE assumption. In Chapter 3, I apply a VE model to simulate basin-scale CO2 injection in the Junggar Basin of Northwestern China. The results show that current regional emissions of more than 100 million tonnes of CO2 per year can be stored effectively, thereby confirming the great potential of the Junggar Basin for early CCUS deployment.
Chapters 4 and 5 contain policy analyses. In Chapter 4, I propose a dynamic system consisting of new CO2 pipelines and novel Allam-cycle power plants in the Central United States, and examine how government policies, including an extended Section 45Q tax credit, may improve the economic feasibility of this system. Lastly, in Chapter 5, I investigate and quantify CO2 emissions implications of power plant projects associated with the BRI. I also propose a “greenness ratio” to measure the level of environmental sustainability of BRI in the power sector.