Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moments of both
stars aligned with the rotation axis. The stars are spinning
rapidly at ∼ ms periods, with R_{LC,∗}/R_∗ = 2.7. Stellar spin
winds fields backwards toroidally, and they can propagate to
the far side of the magnetosphere closer to the opposing star.
This movie shows the corotating field pattern as the orbit progresses.
China is the world's largest carbon emitter and suffers from severe air pollution. About one million deaths in China were attributable to air pollution in 2017. Alternative energy vehicles (AEVs), e.g. electric, hydrogen fuel cell, and natural gas vehicles, can help achieve both carbon emission mitigation and air quality improvement. However, climate, air quality and health co-benefit of AEVs powered by deeply decarbonized electricity generation remain poorly quantified. Here, we conduct a quantitative integrated assessment of the air quality, health, carbon emission mitigation and economic benefits of AEV deployment as the electricity grid decarbonizes in China. We find population-weighted annual PM2.5 and summer O3 concentration can decrease as large as 5.7μgm−3 and 4.9ppb. Annual avoided premature mortalities and years of life lost resulting from improved ambient air pollution can be as large as ~329,000 persons and ~1,611,000 years. We thus show that maximizing climate, air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
Small changes in word choice can lead to dramatically different interpretations of narratives. How does the brain accumulate and integrate such local changes to construct unique neural representations for different stories? In this study we created two distinct narratives by changing only a few words in each sentence (e.g. “he” to “she” or “sobbing” to “laughing”) while preserving the grammatical structure across stories. We then measured changes in neural responses between the two stories. We found that the differences in neural responses between the two stories gradually increased along the hierarchy of processing timescales. For areas with short integration windows, such as early auditory cortex, the differences in neural responses between the two stories were relatively small. In contrast, in areas with the longest integration windows at the top of the hierarchy, such as the precuneus, temporal parietal junction, and medial frontal cortices, there were large differences in neural responses between stories. Furthermore, this gradual increase in neural difference between the stories was highly correlated with an area’s ability to integrate information over time. Amplification of neural differences did not occur when changes in words did not alter the interpretation of the story (e.g. “sobbing” to “crying”). Our results demonstrate how subtle differences in words are gradually accumulated and amplified along the cortical hierarchy as the brain constructs a narrative over time.
The Magnetospheric Multiscale (MMS) mission has given us unprecedented access to high cadence particle and field data of magnetic reconnection at Earth's magnetopause. MMS first passed very near an X-line on 16 October 2015, the Burch event, and has since observed multiple X-line crossings. Subsequent 3D particle-in-cell (PIC) modeling efforts of and comparison with the Burch event have revealed a host of novel physical insights concerning magnetic reconnection, turbulence induced particle mixing, and secondary instabilities. In this study, we employ the Gkeyll simulation framework to study the Burch event with different classes of extended, multi-fluid magnetohydrodynamics (MHD), including models that incorporate important kinetic effects, such as the electron pressure tensor, with physics-based closure relations designed to capture linear Landau damping. Such fluid modeling approaches are able to capture different levels of kinetic physics in global simulations and are generally less costly than fully kinetic PIC. We focus on the additional physics one can capture with increasing levels of fluid closure refinement via comparison with MMS data and existing PIC simulations. In particular, we find that the ten-moment model well captures the agyrotropic structure of the pressure tensor in the vicinity of the X-line and the magnitude of anisotropic electron heating observed in MMS and PIC simulations. However, the ten-moment model has difficulty resolving the lower hybrid drift instability, which has been observed to plays a fundamental role in heating and mixing electrons in the current layer.
Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes, such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co- and counter-propagating CAEs and GAEs are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive. Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in omega/omega_{ci} and k_{||}/kperp, which are often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible. Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX observations of cntr-GAEs.
Conditions for net fast ion drive are derived for beam-driven, co-propagating, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes driven by the Landau resonance with super-Alfvenic fast ions. Approximations applicable to realistic neutral beam distributions and mode characteristics observed in spherical tokamaks enable the derivation of marginal stability conditions for these modes. Such conditions successfully reproduce the stability boundaries found from numerical integration of the exact expression for local fast ion drive/damping. Coupling between the CAE and GAE branches of the dispersion due to finite \omega/\omega_{ci} and k_\parallel/k_\perp is retained and found to be responsible for the existence of the GAE instability via this resonance. Encouraging agreement is demonstrated between the approximate stability criterion, simulation results, and a database of NSTX observations of co-CAEs.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moment of one
star aligned with the rotation axis, and the magnetic moment of the other star tilted and antialigned with the rotation axis.
The stars are not spinning, i.e., R_{LC,∗} =
∞. Fields from each star encircle the other star and force
fields coming off the second star backwards toroidally.
This movie shows the corotating field pattern as the orbit progresses.
Magnetic field lines and current sheets for an orbiting neutron star binary with the magnetic moment of one star
aligned with the rotation axis, and the magnetic moment of the
other star tilted and antialigned with the rotation axis. The
stars are spinning rapidly at ∼ ms periods, with R_{LC,∗} /R_∗ =
2.7.
Stellar spin winds fields backwards toroidally.
This movie shows the corotating field pattern as the orbit progresses.
Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily-calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially-limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. This method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.