« Previous |
1 - 50 of 202
|
Next »
Number of results to display per page
Search Results
2. A Reduced Resistive Wall Mode Kinetic Stability Model for Disruption Forecasting
- Author(s):
- Berkery, J.W.; Sabbagh, S.A.; Bell, R.E.; Gerhardt, S.P.; LeBlanc, B.P.
- Abstract:
- Kinetic modification of ideal stability theory from stabilizing resonances of mode-particle interaction has had success in explaining resistive wall mode (RWM) stability limits in tokamaks. With the goal of real-time stability forecasting, a reduced kinetic stability model has been implemented in the new Disruption Event Characterization and Forecasting (DECAF) code, which has been written to analyze disruptions in tokamaks. The reduced model incorporates parameterized models for ideal limits on beta, a ratio of plasma pressure to magnetic pressure, which are shown to be in good agreement with DCON code calculations. Increased beta between these ideal limits causes a shift in the unstable region of delta W_K space, where delta W_K is the change in potential energy due to kinetic effects that is solved for by the reduced model, such that it is possible for plasmas to be unstable at intermediate beta but stable at higher beta. Gaussian functions for delta W_K are defined as functions of E cross B frequency and collisionality, with parameters reflecting the experience of the National Spherical Torus Experiment (NSTX). The reduced model was tested on a database of discharges from NSTX and experimentally stable and unstable discharges were separated noticeably on a stability map in E cross B frequency, collisionality space. The reduced model only failed to predict an unstable RWM in 15.6% of cases with an experimentally unstable RWM and performed well on predicting stability for experimentally stable discharges as well.
- Type:
- Dataset
- Issue Date:
- May 2017
3. A Riccati Solution for the Ideal MHD Plasma Response with Applications to Real-time Stability Control
- Author(s):
- Glasser, A.; Kolemen, E.; Glasser, A.H.
- Abstract:
- To effectuate near real-time feedback control of ideal MHD instabilities in a tokamak geometry, a rapid solution for stability analysis is a prerequisite. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation (MRDE). Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ODEs often encountered in ideal MHD stability analyses-—for example, in tokamak edge and stellarator physics. We then demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON—enabling its parallel operation in near real-time. Output is shown to match with high accuracy, and with wall-clock time ≪ 1s. Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ > 1s-—as in ITER.
- Type:
- Dataset
- Issue Date:
- March 2018
4. A dynamic magnetic tension force as the cause of failed solar eruptions
- Abstract:
- Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.
- Type:
- Dataset
- Issue Date:
- 11 December 2015
5. A multi-machine scaling of halo current rotation
- Author(s):
- Myers, C.E.; Eidietis, N.W.; Gerasimov, S.N.; Gerhardt, S.Pl.; Granetz, R.S.; Hender, T.C.; Pautasso, G.
- Abstract:
- Halo currents generated during unmitigated tokamak disruptions are known to develop rotating asymmetric features that are of great concern to ITER because they can dynamically amplify the mechanical stresses on the machine. This paper presents a multi-machine analysis of these phenomena. More specifically, data from C-Mod, NSTX, ASDEX Upgrade, DIII-D, and JET are used to develop empirical scalings of three key quantities: (1) the machine-specific minimum current quench time, tauCQ; (2) the halo current rotation duration, trot; and (3) the average halo current rotation frequency, <fh>. These data reveal that the normalized rotation duration, trot/tauCQ, and the average rotation velocity, <vh>, are surprisingly consistent from machine to machine. Furthermore, comparisons between carbon and metal wall machines show that metal walls have minimal impact on the behavior of rotating halo currents. Finally, upon projecting to ITER, the empirical scalings indicate that substantial halo current rotation above <fh> = 20 Hz is to be expected. More importantly, depending on the projected value of tauCQ in ITER, substantial rotation could also occur in the resonant frequency range of 6-20 Hz. As such, the possibility of damaging halo current rotation during unmitigated disruptions in ITER cannot be ruled out.
- Type:
- Dataset
- Issue Date:
- October 2017
6. A novel scheme for error field correction in permanent magnet stellarators
- Author(s):
- Rutkowski, Adam; Hammond, Kenneth; Zhu, Caoxiang; Gates, David; Chambliss, Amelia
- Abstract:
- Stellarators offer a promising path towards fusion reactors, but their design and construction are complicated by stringent tolerance requirements on highly complex 3D coils. A potential way to simplify the engineering requirements for stellarators is to use simple planar toroidal field coils along with permanent magnet arrays to generate shaping fields. In order to ensure sufficient field accuracy while minimizing engineering complexity and system cost, new techniques are required to correct the field produced by the permanent magnet arrays to within requirements set by plasma physics. This work describes a novel correction method developed for this purpose. This analysis is applied to the design of a quasi-axisymmetric stellarator that employs a combination of permanent magnets and planar toroidal field coils to generate its magnetic field. Analysis techniques and initial results using the method for error correction on a proposed permanent magnet stellarator are shown, and it is demonstrated that the method successfully meets the design requirements of the project.
- Type:
- Dataset
- Issue Date:
- 7 December 2022
7. A scalable real-time framework for Thomson scattering analysis: Application to NSTX-U
- Author(s):
- F. M. Laggner, A. Diallo, B. P. LeBlanc, R. Rozenblat, G. Tchilinguirian, E.Kolemen, the NSTX-U team
- Abstract:
- A detailed description of a prototype setup for real-time (rt) Thomson scattering (TS) analysis is presented and implemented in the multi-point Thomson scattering (MPTS) diagnostic system at the National Spherical Torus Experiment Upgrade(NSTX-U). The data acquisition hardware was upgraded with rt capable electronics (rt-analog digital converters (ADCs) and a rt server) that allow for fast digitization of the laser pulse signal of eight radial MPTS channels. In addition, a new TS spectrum analysis software for a rapid calculation of electron temperature (Te) and electron density (ne) was developed. Testing of the rt hardware and data analysis soft-ware was successfully completed and benchmarked against the standard, post-shot evaluation. Timing tests were performed showing that the end-to-end processing time was reproducibly below 17 ms for the duration of at least 5 s, meeting a 60 Hz deadline by the laser pulse repetition rate over the length of a NSTX-U discharge. The presented rt framework is designed to be scalable in system size, i.e. incorporation of additional radial channels by solely adding additional rt capable hardware. Furthermore, it is scalable in its operation duration and was continuously run for up to 30 min, making it an attractive solution for machines with long discharge duration such as advanced, non-inductive tokamaks or stellarators.
- Type:
- Dataset
- Issue Date:
- March 2019
8. A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)
- Author(s):
- Looby, Tom; Reinke, Matthew; Wingen, Andreas; Menard, Jonathan; Gerhardt, Stefan; Gray, Travis; Donovan, David; Unterberg, Ezekial; Klabacha, Jonathan; Messineo, Mike
- Abstract:
- The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.
- Type:
- Dataset
- Issue Date:
- March 2021
9. A thermodynamic phase transition in magnetic reconnection
- Author(s):
- Jara-Almonte, Jonathan; Hantao, Ji
- Abstract:
- Data supporting the manuscript "A thermodynamic phase transition in magnetic reconnection" published in Physical Review Letters.
- Type:
- Dataset
- Issue Date:
- 7 July 2021
10. Advances in boronization on NSTX-Upgrade
- Author(s):
- Skinner, C.H.; Bedoya, F.; Scotti, F.; Allain, J.P.; Blanchard, W.; Cai, D.; Jaworski, M.; Koel, B.E.
- Abstract:
- Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5 s to 5–8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron deposition versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. This increase correlated with the rise of oxygen emission from the plasma.
- Type:
- Dataset
- Issue Date:
- January 2017
11. Analytic stability boundaries for compressional and global Alfven eigenmodes driven by fast ions. I. Interaction via ordinary and anomalous cyclotron resonances.
- Author(s):
- Lestz J.B., Gorelenkov N.N., Belova E.V., Tang S.X., Crocker N.A.
- Abstract:
- Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes, such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co- and counter-propagating CAEs and GAEs are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive. Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in omega/omega_{ci} and k_{||}/kperp, which are often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible. Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX observations of cntr-GAEs.
- Type:
- Dataset
- Issue Date:
- September 2019
12. Analytic stability boundaries for compressional and global Alfven eigenmodes driven by fast ions. II. Interaction via Landau resonance.
- Author(s):
- Lestz, J.B.; Gorelenkov, N.N.; Belova, E.V.; Tang, S.X.; Crocker, N.A.
- Abstract:
- Conditions for net fast ion drive are derived for beam-driven, co-propagating, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes driven by the Landau resonance with super-Alfvenic fast ions. Approximations applicable to realistic neutral beam distributions and mode characteristics observed in spherical tokamaks enable the derivation of marginal stability conditions for these modes. Such conditions successfully reproduce the stability boundaries found from numerical integration of the exact expression for local fast ion drive/damping. Coupling between the CAE and GAE branches of the dispersion due to finite \omega/\omega_{ci} and k_\parallel/k_\perp is retained and found to be responsible for the existence of the GAE instability via this resonance. Encouraging agreement is demonstrated between the approximate stability criterion, simulation results, and a database of NSTX observations of co-CAEs.
- Type:
- Dataset
- Issue Date:
- January 2020
13. Application of Benchmarked Kinetic Resistive Wall Mode Stability Codes to ITER, Including Additional Physics
- Author(s):
- Berkery, J.W.; Wang, Z.R.; Sabbagh, S.A.; Liu, Y.Q.; Betti, R.; Guazotto, L.
- Abstract:
- Leading resistive wall mode (RWM) stability codes MARS-K [Y. Liu, et al., Phys. Plasmas 15, 112503 (2008)] and MISK [B. Hu, et al., Phys. Plasmas 12, 057301 (2005)] have been previously benchmarked. The benchmarking has now been extended to include additional physics, and used to project the stability of ITER in a realistic operating space. Due to ITER's relatively low plasma rotation and collisionality, collisions and non-resonance rotational effects were both found to have little impact on stability, and these non-resonance rotational effects also will not self-consistently affect the ITER RWM eigenfunction. Resonances between thermal ions and electrons and the expected level of ITER toroidal rotation were found to be important to stability, as were alpha particles, which are not in rotational resonance. MISK calculations show that without alpha particles, ITER is projected to be unstable to the RWM, but the expected level of alphas is calculated to provide a sufficient level of stability.
- Type:
- Dataset
- Issue Date:
- October 2017
14. Application of IR imaging for free-surface velocity measurement in liquid-metal systems
- Author(s):
- Hvasta, M. G.; Kolemen, E.; Fisher, A.
- Abstract:
- Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily-calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially-limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. This method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.
- Type:
- Dataset
- Issue Date:
- January 2017
15. Application of IR imaging for free-surface velocity measurement in liquid-metal systems
- Author(s):
- Hvasta, M.H.; Kolemen, E.; Fisher, A.
- Abstract:
- Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily-calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially-limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. This method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.
- Type:
- Dataset
- Issue Date:
- January 2017
16. Application of Townsend avalanche theory to tokamak startup by coaxial helicity injection
- Author(s):
- Hammond, K.C.; Raman, R.; Volpe, F.A.
- Abstract:
- Townsend avalanche theory is employed to model and interpret plasma initiation in NSTX by Ohmic heating and coaxial helicity injection (CHI). The model is informed by spatially resolved vacuum calculations of electric field and magnetic field line connection length in the poloidal cross-section. The model is shown to explain observations of Ohmic startup including the duration and location of breakdown. Adapting the model to discharges initiated by CHI offers insight into the causes of upper divertor (absorber) arcs in cases where the discharge fails to initiate in the lower divertor gap. Finally, upper and lower limits are established for vessel gas fill based on requirements for breakdown and radiation. It is predicted that CHI experiments on NSTX-U should be able to use as much as four times the amount of prefill gas employed in CHI experiments in NSTX. This should provide greater flexibility for plasma start-up, as the injector flux is projected to be increased in NSTX-U.
- Type:
- Dataset
- Issue Date:
- September 2017
17. Application of transient CHI plasma startup to future ST and AT devices
- Author(s):
- Hammond, K.C.; Raman, R.; Jardin, S.C.
- Abstract:
- Employment of non-inductive plasma start-up techniques would considerably simplify the design of a spherical tokamak fusion reactor. Transient coaxial helicity injection (CHI) is a promising method, expected to scale favorably to next-step reactors. However, the implications of reactor-relevant parameters on the initial breakdown phase for CHI have not yet been considered. Here, we evaluate CHI breakdown in reactor-like configurations using an extension of the Townsend avalanche theory. We find that a CHI electrode concept in which the outer vessel wall is biased to achieve breakdown, while previously successful on NSTX and HIT-II, may exhibit a severe weakness when scaled up to a reactor. On the other hand, concepts which employ localized biasing electrodes such as those used in QUEST would avoid this issue. Assuming that breakdown can be successfully attained, we then apply scaling relationships to predict plasma parameters attainable in the transient CHI discharge. Assuming the use of 1 Wb of injector flux, we find that plasma currents of 1 MA should be achievable. Furthermore, these plasmas are expected to Ohmically self-heat with more than 1 MW of power as they decay, facilitating efficient hand-off to steady-state heating sources. These optimistic scalings are supported by TSC simulations.
- Type:
- Dataset
- Issue Date:
- February 2019
18. Blob Structure and Motion in the Edge and SOL of NSTX
- Author(s):
- Zweben, S.J.; J.R. Myra; W.M. Davis; D.A. D'Ippolito; T.K. Gray; S.M. Kaye; B.P. LeBlanc; R.J. Maqueda; D.A. Russell; D.P. Stotler
- Abstract:
- Blob analysis dataset
- Type:
- Dataset
- Issue Date:
- January 2016
19. Blob wakes in NSTX
- Author(s):
- Zweben SJ, Myra JR, Diallo A, Russell DA, Scotti F, Stotler DP
- Abstract:
- Transient small-scale structures were identified in the wake of blobs movingpoloidally through the SOL of high-powered H-mode plasmas in NSTX, using the gaspuff imaging (GPI) diagnostic. These blob wakes had a poloidal wavelength in therange 3.5 cm, which is significantly smaller than the average blob scale of~12 cm, and the wakes had a poloidal velocity of 1.5 km/sec in theelectron diamagnetic direction, which is opposite to the blob poloidal velocity inthese shots. These wakes were radially localized 0-4 cm outside the separatrix andoccurred within ~50 microsec after the passage of a blob through the GPI field of view.The clearest wakes were seen when the GPI viewing angle was well aligned with thelocal B field line, as expected for such small-scale structures given the diagnosticgeometry. A plausible theoretical interpretation of the wakes is discussed: theobserved wakes share some features of drift waves and/or drift-Alfven waves whichcould be excited
- Type:
- Dataset
- Issue Date:
- July 2019
20. Blob-hole correlation model for edge turbulence and comparisons with NSTX GPI data
- Author(s):
- Myra, J.R.; Zweben, S.J.; Russell, D.A.
- Abstract:
- Gas puff imaging (GPI) observations made in NSTX [Zweben S J, et al., 2017 Phys. Plasmas 24 102509] have revealed two-point spatial correlations of edge and scrape-off layer turbulence in the plane perpendicular to the magnetic field. A common feature is the occurrence of dipole-like patterns with significant regions of negative correlation. In this paper, we explore the possibility that these dipole patterns may be due to blob-hole pairs. Statistical methods are applied to determine the two-point spatial correlation that results from a model of blob-hole pair formation. It is shown that the model produces dipole correlation patterns that are qualitatively similar to the GPI data in several respects. Effects of the reference location (confined surfaces or scrape-off layer), a superimposed random background, hole velocity and lifetime, and background sheared flows are explored and discussed with respect to experimental observations. Additional analysis of the experimental GPI dataset is performed to further test this blob-hole correlation model. A time delay two-point spatial correlation study did not reveal inward propagation of the negative correlation structures that were postulated to correspond to holes in the data nor did it suggest that the negative correlation structures are due to neutral shadowing. However, tracing of the highest and lowest values (extrema) of the normalized GPI fluctuations shows strong evidence for mean inward propagation of minima and outward propagation of maxima, in qualitative agreement with theoretical expectations. Other properties of the experimentally observed extrema are discussed.
- Type:
- Dataset
- Issue Date:
- July 2018
21. Calibrationless rotating Lorentz-force flowmeters for low flow rate applications
- Author(s):
- Hvasta, M. G.; Dudt, D.; Fisher, A. E.; Kolemen, E.
- Abstract:
- A 'weighted magnetic bearing' has been developed to improve the performance of rotating Lorentz-force flowmeters (RLFFs). Experiments have shown that the new bearing reduces frictional losses within a double-sided, disc-style RLFF to negligible levels. Operating such an RLFF under 'frictionless' conditions provides two major benefits. First, the steady-state velocity of the RLFF magnets matches the average velocity of the flowing liquid at low flow rates. This enables an RLFF to make accurate volumetric flow measurements without any calibration or prior knowledge of the fluid properties. Second, due to minimized frictional losses, an RLFF is able to measure low flow rates that cannot be detected when conventional, high-friction bearings are used. This paper provides a brief background on RLFFs, gives a detailed description of weighted magnetic bearings, and compares experimental RLFF data to measurements taken with a commercially available flowmeter.
- Type:
- Dataset
- Issue Date:
- 29 May 2018
22. Collisional dependence of Alfven mode saturation in tokamaks
- Author(s):
- Zhou, M.; White, R.
- Abstract:
- Saturation of \alfven modes driven unstable by a distribution of high energy particles as a function of collisionality is investigated with a guiding center code, using numerical eigenfunctions produced by linear theory and numerical high energy particle distributions. The most important resonance is found and it is shown that when the resonance domain is bounded, not allowing particles to collisionlessly escape, the saturation amplitude is given by the balance of the resonance mixing time with the time for nearby particles to collisionally diffuse across the resonance width. Saturation amplitudes are in agreement with theoretical predictions as long as the mode amplitude is not so large that it produces stochastic loss from the resonance domain.
- Type:
- Dataset
- Issue Date:
- December 2016
23. Comment on ‘Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions’
- Author(s):
- Yoo, Min-Gu; Na, Yong-Su
- Abstract:
- In this comment, we point out possible critical numerical flaws of recent particle simulation studies (Jiang et al 2016 Nucl. Fusion 56 126017, Peng et al 2018 Nucl. Fusion 58 026007) on the electrical gas breakdown in a simple one-dimensional periodic slab geometry. We show that their observations on the effects of the ambipolar electric fields during the breakdown, such as the sudden reversal of the ion flow direction, could not be real physical phenomena but resulting from numerical artifacts violating the momentum conservation law. We show that an incomplete implementation of the direct-implicit scheme can cause the artificial electric fields and plasma transports resulting in fallacies in simulation results. We also discuss that their simple plasma model without considering poloidal magnetic fields seriously mislead the physical mechanism of the electrical gas breakdown because it cannot reflect important dominant plasma dynamics in the poloidal plane (Yoo et al 2018 Nat. Commun. 9 3523).
- Type:
- Dataset
- Issue Date:
- June 2019
24. Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade
- Author(s):
- Liu, D.; Heidbrink, W.W.; Tritz, K.; Fredrickson, E.D.; Hao, G.Z.; Zhu, Y.B.
- Abstract:
- A compact and multi-view Solid State Neutral Particle Analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade (NSTX-U). The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPA and r-SSNPA are mainly sensitive to passing and trapped particles respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thickness to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10 and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz, have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics (MHD) instabilities.
- Type:
- Dataset
- Issue Date:
- November 2016
25. Compact steady-state tokamak performance dependence on magnet and core physics limits
- Author(s):
- Menard, J.E.
- Abstract:
- Compact tokamak fusion reactors utilizing advanced high-temperature superconducting magnets for the toroidal field coils have received considerable recent attention due to the promise of more compact devices and more economical fusion energy development. Facilities with combined Fusion Nuclear Science (FNS) and Pilot Plant missions to provide both the nuclear environment needed to develop fusion materials and components while also potentially achieving sufficient fusion performance to generate modest net electrical power are considered. The performance of the tokamak fusion system is assessed using a range of core physics and toroidal field magnet performance constraints to better understand which parameters most strongly influence the achievable fusion performance.
- Type:
- Dataset
- Issue Date:
- December 2018
26. Computation of Alfvèn eigenmode stability and saturation through a reduced fast ion transport model in the TRANSP tokamak transport code
- Author(s):
- Podesta, M.; Gorelenkova, M.; Gorelenkov, N.N.; White, R.B.
- Abstract:
- Alfvénic instabilities (AEs) are well known as a potential cause of enhanced fast ion transport in fusion devices. Given a specific plasma scenario, quantitative predictions of (i) expected unstable AE spectrum and (ii) resulting fast ion transport are required to prevent or mitigate the AE- induced degradation in fusion performance. Reduced models are becoming an attractive tool to analyze existing scenarios as well as for scenario prediction in time-dependent simulations. In this work, a neutral beam heated NSTX discharge is used as reference to illustrate the potential of a reduced fast ion transport model, known as kick model, that has been recently implemented for interpretive and predictive analysis within the framework of the time-dependent tokamak transport code TRANSP. Predictive capabilities for AE stability and saturation amplitude are first assessed, based on given thermal plasma profiles only. Predictions are then compared to experimental results, and the interpretive capabilities of the model further discussed. Overall, the reduced model captures the main properties of the instabilities and associated effects on the fast ion population. Additional information from the actual experiment enables further tuning of the model’s parameters to achieve a close match with measurements.
- Type:
- Dataset
- Issue Date:
- September 2017
27. Correlation between the relative blob fraction and plasma parameters in NSTX
- Author(s):
- Zweben, S,J.; Banerjee, S; Bisai, N; Diallo, A; Lampert, M; LeBlanc, B; Myra, JR; Russell, D.A.
- Abstract:
- data of figures used in this publication
- Type:
- Dataset
- Issue Date:
- 18 January 2022
28. Coupling between Alfven wave and Kelvin-Helmholtz waves in the low latitude boundary layer
- Author(s):
- Kim, Eun-Hwa; Johnson, Jay; Nykyri, Katariina
- Abstract:
- The Kelvin-Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfven velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfv\'en Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfven wave. There are remarkable differences between the primary and the secondary KH waves including wave frequency, the growth rate, and the ratio between transverse and the compressional component. The secondary KH wave energy is concentrated near the shear Alfven wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at lower Mach number. Because the transverse component of the secondary KH waves is stronger than the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.
- Type:
- Dataset
- Issue Date:
- December 2021
29. Data for "The value of fusion energy to a decarbonized United States electric grid"
- Author(s):
- Schwartz, Jacob A.; Ricks, Wilson; Kolemen, Egemen; Jenkins, Jesse D.
- Abstract:
- Fusion could be a part of future decarbonized electricity systems, but it will need to compete with other technologies. In particular, pulsed tokamaks plants have a unique operational mode, and evaluating which characteristics make them economically competitive can help select between design pathways. Using a capacity expansion and operations model, we determined cost thresholds for pulsed tokamaks to reach a range of penetration levels in a future decarbonized US Eastern Interconnection. The required capital cost to reach a fusion capacity of 100 GW varied from $3000 to $7200/kW, and the equilibrium penetration increases rapidly with decreasing cost. The value per unit power capacity depends on the variable operational cost and on cost of its competition, particularly fission, much more than on the pulse cycle parameters. These findings can therefore provide initial cost targets for fusion more generally in the United States.
- Type:
- Dataset
- Issue Date:
- 2022
30. Dataset for the letter "Shifting and Splitting of Resonance Lines due to Dynamical Friction in Plasmas" Phys. Rev. Lett. 130, 105101 (2023)
- Author(s):
- Duarte, Vinicius
- Type:
- Dataset
- Issue Date:
- 2023
31. Deep convolutional neural networks for multi-scale time-series classification and application to disruption prediction in fusion devices
- Author(s):
- Churchill, R.M; the DIII-D team
- Abstract:
- The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
- Type:
- Dataset
- Issue Date:
- October 2019
32. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors
- Author(s):
- Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.
- Abstract:
- Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.
- Type:
- Dataset
- Issue Date:
- January 2018
33. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique
- Author(s):
- Crocker, N.A.; Kubota, S.; Peebles, W.A.; Rhodes, T.L.; Fredrickson, E.D.; Belova, E.; Diallo, A.; LeBlanc, B.P.; Sabbagh, S.A.
- Abstract:
- Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2–4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).
- Type:
- Dataset
- Issue Date:
- November 2017
34. Design and measurement methods for a lithium vapor box similarity experiment
- Author(s):
- Schwartz, J. A.; Emdee, E. D.; Jaworski, M. A; Goldston, R. J.
- Abstract:
- The lithium vapor box divertor is a concept for handling the extreme divertor heat fluxes in magnetic fusion devices. In a baffled slot divertor, plasma interacts with a dense cloud of Li vapor which radiates and cools the plasma, leading to recombination and detachment. Before testing on a tokamak the concept should be validated: we plan to study detachment and heat redistribution by a Li vapor cloud in laboratory experiments. Mass changes and temperatures are measured to validate a Direct Simulation Monte Carlo model of neutral Li. The initial experiment involves a 5 cm diameter steel box containing 10g of Li held at 650 degrees C as vapor flows out a wide nozzle into a similarly-sized box at a lower temperature. Diagnosis is made challenging by the required material compatibility with lithium vapor. Vapor pressure is a steep function of temperature, so to validate mass flow models to within 10%, absolute temperature to within 4.5K is required. The apparatus is designed to be used with an analytical balance to determine mass transport. Details of the apparatus and methods of temperature and mass flow measurements are presented.
- Type:
- Dataset
- Issue Date:
- August 2018
35. Design and simulation of the snowflake divertor control for NSTX-U
- Author(s):
- Vail, P. J.; Boyer, M. D.; Welander, A. S.; Kolemen, E.; U.S. Department of Energy contract number DE-AC02-09CH11466
- Abstract:
- This paper presents the development of a physics-based multiple-input-multiple-output algorithm for real-time feedback control of snowflake divertor (SFD) configurations on the National Spherical Torus eXperiment Upgrade (NSTX-U). A model of the SFD configuration response to applied voltages on the divertor control coils is first derived and then used, in conjunction with multivariable control synthesis techniques, to design an optimal state feedback controller for the configuration. To demonstrate the capabilities of the controller, a nonlinear simulator for axisymmetric shape control was developed for NSTX-U which simultaneously evolves the currents in poloidal field coils based upon a set of feedback-computed voltage commands, calculates the induced currents in passive conducting structures, and updates the plasma equilibrium by solving the free-boundary Grad-Shafranov problem. Closed-loop simulations demonstrate that the algorithm enables controlled operations in a variety of SFD configurations and provides capabilities for accurate tracking of time-dependent target trajectories for the divertor geometry. In particular, simulation results suggest that a time-varying controller which can properly account for the evolving SFD dynamical response is not only desirable but necessary for achieving acceptable control performance. The algorithm presented in this paper has been implemented in the NSTX-U Plasma Control System in preparation for future control and divertor physics experiments.
- Type:
- Dataset
- Issue Date:
- April 2019
36. Design of Faraday cup ion detectors built by thin film deposition
- Author(s):
- Szalkowski, G.A.; Darrow, D.S.; Cecil, F.E.
- Abstract:
- Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on JET and NSTX-U. The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.
- Type:
- Dataset
- Issue Date:
- January 2017
37. Design of an arrangement of cubic magnets for a quasi-axisymmetric stellarator experiment
- Author(s):
- Hammond, Kenneth; Zhu, Caoxiang; Corrigan, Keith; Gates, David; Lown, Robert; Mercurio, Robert; Qian, Tony; Zarnstorff, Michael
- Abstract:
- The usage of permanent magnets to shape the confining field of a stellarator has the potential to reduce or eliminate the need for non-planar coils. As a proof-of-concept for this idea, we have developed a procedure for designing an array of cubic permanent magnets that works in tandem with a set of toroidal-field coils to confine a stellarator plasma. All of the magnets in the design are constrained to have identical geometry and one of three polarization types in order to simplify fabrication while still producing sufficient field accuracy. We present some of the key steps leading to the design, including the geometric arrangement of the magnets around the device, the procedure for optimizing the polarizations according to three allowable magnet types, and the choice of magnet types to be used. We apply these methods to design an array of rare-Earth permanent magnets that can be paired with a set of planar toroidal-field coils to confine a quasi-axisymmetric plasma with a toroidal magnetic field strength of about 0.5 T on axis.
- Type:
- Dataset
- Issue Date:
- 2022
38. Detection of an electron beam in a high density plasma via an electrostatic probe
- Author(s):
- Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
- Abstract:
- An electron beam is detected by a 1D floating potential probe array in a relatively high density (10e12 − 10e13 cm−3) and low temperature (∼ 5 eV) plasma of the Magnetic Reconnection Experiment (MRX). Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
- Type:
- Dataset
- Issue Date:
- 2018
39. Development of a reduced model for energetic particle transport by sawteeth in tokamaks
- Author(s):
- Podesta, Mario
- Type:
- Dataset
- Issue Date:
- 9 November 2021
40. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements
- Author(s):
- Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.
- Abstract:
- Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He atoms which will be produced by D-T fusion. To study He exhaust, Penning gauges were used to measure total neutral pressure assisted by spectroscopy to resolve the D and He partial pressures. In this contribution, initial results are shown from developing this technique into a miniaturized configuration for direct in-situ measurements in the divertor of fusion devices. The configuration is based off a gauge originally designed for the National Spherical Tokamak Experiment-Upgrade (NSTX-U). The goal of this new miniaturized design it to reduce the space required by the gauge on the device and use of the inherent magnetic field of the machine rather than permanent magnets inside the gauge, enabling it to be adapted into a system that can be extended directly into the divertor region. The feasibility test of the method for NSTX-U and the Wendelstein 7-X (W7-X) stellarator are surveyed. For W7-X, a commercial Penning Gauge has been installed on an outboard vacuum flange as a generic feasibility test in the neutral gas environment of a stellarator. At an integration time of 25s, helium lines can be seen down to 10^-5 mbar and H-alpha lines down to 10^-6 mbar. Successful measurement of the total as well as the fractional neutral pressures of He and H has been shown. A first prototype of the miniature Penning gauge has been tested in Madison and shows a near linear power law scaling between current and pressure: I = C*P^n with n = 1.0 - 1.2. Pressure measurements were achieved starting at 10^-3 mbar and down to 10^-6 mbar. A modular gauge is being assembled, which allows easy interchangeability of the anode to test new anode geometries, in order to improve optical access and increase spectroscopic sensitivity. This shall enable an increase of the time resolution of the spectroscopically assisted fractional neutral pressure measurements to up to 1kHz.
- Type:
- Dataset
- Issue Date:
- November 2016
41. Developments on two lithium vapor-box linear test-stand experiments
- Author(s):
- Schwartz, Jacob A.; Goldston, Robert J.
- Abstract:
- The lithium vapor-box divertor is a possible fusion power exhaust solution.It uses condensation pumping to create a gradient of vapor density in a divertor slot; this should allow a stable detachment front without active feedback.As initial explorations of the concept, two test stands which take the form of three connected cylindrical stainless steel boxes are being developed: one without plasma at PPPL, to test models of lithium evaporation and flow; and one for the linear plasma device Magnum-PSI (at DIFFER in Eindhoven, The Netherlands) to test the ability of a lithium vapor cloud to induce volumetric detachment and redistribute the plasma power.The first experiment uses boxes with diameters of 6 cm, joined by apertures with diameters of 2.2 cm. Up to 1 g of Li is placed in one box, which is heated to up to 600 degrees C. The Li evaporates, then flows to and condenses in the two other, cooler boxes over several minutes. The quantity of Li transported is assessed by weighing the boxes before and after the heating cycle, and is compared to the quantity predicted to flow for the box at its measured temperature using a Direct Simulation Monte Carlo code, SPARTA. With good experimental conditions, the two values agree to within 15%.The experiment on Magnum-PSI is in the conceptual design stage.The design is assessed by simulations using the code B2.5-Eunomia.They show that when the hydrogen-ion plasma beam, with n_e = 4e20 per cubic meter, T_e = 1.5 eV, and r = 1 cm, is passed through a 16 cm long, 12 Pa, 625 degree C Li vapor cloud, the plasma heat flux and pressure on the target are significantly reduced compared to the case without Li.With the Li present, the plasma is cooled by excitation of Li neutrals followed by radiation until it volumetrically recombines, lowering the heat flux from 3.7 MW/m^2 to 0.13 MW/m^2, and the pressure is reduced by 93%, largely by collisions of hydrogen ions with neutral Li.
- Type:
- Dataset
- Issue Date:
- January 2021
42. Diagnostics for molybdenum and tungsten erosion and transport in NSTX-U
- Author(s):
- Scotti, F.; Soukhanovskii, V.; Weller, M.
- Abstract:
- A comprehensive set of spectroscopic diagnostics is planned in the National Spherical Torus Experi- ment Upgrade to connect measurements of molybdenum and tungsten divertor sources to scrape-o↵ layer (SOL) and core impurity transport, supporting the installation of high-Z plasma facing compo- nents which is scheduled to begin with a row of molybdenum tiles. Imaging with narrow-bandpass interference filters and high-resolution spectroscopy will be coupled to estimate divertor impurity influxes. Vacuum ultraviolet and extreme ultraviolet spectrometers will allow connecting high-Z sources to SOL transport and core impurity content. The high-Z diagnostics suite complements the existing measurements for low-Z impurities (carbon and lithium), critical for the characterization of sputtering of high-Z materials.
- Type:
- Dataset
- Issue Date:
- November 2016
43. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
- Author(s):
- Wang, Z.R.; Park, J.-K.; Menard, J.E.; Liu, Y.Q.; Kaye, S.M.; Gerhardt, S.
- Abstract:
- High $\beta$ plasma response to the rotating n=1 external magnetic perturbations is numerically studied and compared with National Spherical Torus eXperiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows the drift kinetic effects are important to resolve the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit [F. Troyon et al., Plasma Phys. Control. Fusion \textbf{26}, 209 (1984)]. Since the external rotating fields and high plasma rotation are presented in NSTX experiments, the importance of resistive wall effect and plasma rotation on determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy, due to plasma rotation, destabilizes the plasma. The complexity of plasma response, in this study, indicates that MHD modeling, including comprehensive physics e.g. the drift kinetic effects, resistive wall and plasma rotation, is essential to reliably predict the plasma behavior in high beta spherical tokamak device.
- Type:
- Dataset
- Issue Date:
- September 2017
44. Dynamics of filaments during the edge-localized mode crash on NSTX
- Author(s):
- Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
- Abstract:
- Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
- Type:
- Dataset
- Issue Date:
- January 2021
45. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
- Author(s):
- Maingi, R.; Hu, J.S.; Sun, Z.; Tritz, K.; Zuo, G.Z.; Xu, W.; Huang, M.; Meng, X.C.; Canik, J.M.; Diallo, A.; Lunsford, R.; Mansfield, D.K.; Osborne, T.H.; Gong, X.Z.; Wang, Y.F.; Li, Y.Y.
- Abstract:
- We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 sec in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D-alpha baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST [J.S. Hu et al., Phys. Rev. Lett. 114 (2015) 055001]. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs [P.T. Lang et al., Nucl. Fusion 57 (2017) 016030], highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
- Type:
- Dataset
- Issue Date:
- December 2017
46. ELM frequency enhancement and discharge modification through lithium granule injection into EAST H-modes
- Author(s):
- Lunsford; Hsu, J.S.; Sun, Z.; Maingi, R.; Mansfield, D.K.; Xu, W.; Zuo, G.Z.; Huang, M.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.; EAST Team
- Abstract:
- The injection of impurity granules into fusion research discharges can serve as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule sizes above a threshold, this can result in full control of the ELM cycle, referred to as ELM pacing. For this research, we extend the investigation to conditions where the natural ELM frequency is too high for ELM pacing to be realized. Utilizing multiple sizes of lithium granules and classifying their effects by granule size, we demonstrate that ELM mitigation through frequency multiplication can be used at ELM triggering rates that nominally make ELM pacing unrealizable. We find that above a size threshold, injected granules promptly trigger ELMs and commensurately enhance the ELM frequency . Below this threshold size, injection of an individual granule does not always lead to the prompt triggering of an ELM; however, collective ablation in the edge pedestal region does enhance the ELM frequency. Specifically, Li granules too small to individually trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz; collectively the granules were observed to enhance the natural ELM frequency up to 620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50% decrease of the ELM size.
- Type:
- Dataset
- Issue Date:
- October 2018
47. ELM-free and inter-ELM divertor heat flux broadening induced by Edge Harmonics Oscillation in NSTX
- Author(s):
- Gan, K.; Ahn, J.-W.; Gray, T.K.; Zweben, S.J.; Fredrickson, E.D.; Scotti, F.; Maingi, R.; Park, J.-K.; Canal, G.P.; Soukhanovskii, V.A.; McLean, A.G.; Wirth, B.D.
- Abstract:
- A new n=1 dominated Edge Harmonic Oscillation (EHO) has been found in NSTX. The new EHO, rotating toroidally in the counter-current direction and the opposite direction of the neutral beam, was observed during certain inter-ELM and ELM-free periods of H-mode operation. This EHO is associated with a significant broadening of the integral heat flux width (?_int) by up to 150%, and a decrease in the divertor peak heat flux by >60%. An EHO induced filament was also observed by the gas puff imaging diagnostic. The toroidal rotating filaments could change the edge magnetic topology resulting in toroidal rotating strike point splitting and heat flux broadening. Experimental result of the counter current rotation of strike points splitting is consistent with the counter-current EHO.
- Type:
- Dataset
- Issue Date:
- December 2017
48. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes
- Author(s):
- Maingi, R.; Canik, J.M.; Bell, R.E.; Boyle, D.P.; Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P.; Sabbagh, S.A.; Scotti, F.; Soukhanovskii, V.A.
- Abstract:
- A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (�dose�) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.
- Type:
- Dataset
- Issue Date:
- August 2016
49. Effects of Axial Boundary Conductivity on a Free Stewartson-Shercliff Layer
- Author(s):
- Caspary, Kyle J.; Choi, Dahan; Ebrahimi, Fatima; Gilson, Erik P.; Goodman, Jeremy; Ji, Hantao
- Abstract:
- The effects of axial boundary conductivity on the formation and stability of a magnetized free Stewartson-Shercliff layer (SSL) in a short Taylor-Couette device are reported. As the axial field increases with insulating endcaps, hydrodynamic Kelvin-Helmholtz-type instabilities set in at the SSLs of the conducting fluid, resulting in a much reduced flow shear. With conducting endcaps, SSLs respond to an axial field weaker by the square root of the conductivity ratio of endcaps to fluid. Flow shear continuously builds up as the axial field increases despite the local violation of the Rayleigh criterion, leading to a large number of hydrodynamically unstable modes. Numerical simulations of both the mean flow and the instabilities are in agreement with the experimental results.
- Type:
- Dataset
- Issue Date:
- 2018
50. Effects of Coulomb collisions on lower hybrid drift waves inside a laboratory reconnection current sheet
- Author(s):
- Yoo, Jongsoo; Hu, Yibo; Ji, Jeong-Young; Ji, Hantao; Yamada, Masaaki; Goodman, Aaron; Bergstedt, Kendra; Alt, Andrew
- Type:
- Dataset
- Issue Date:
- 2021