Number of results to display per page

## Search Results

### 182. The updated ITPA global H-mode confinement database: description and analysis

- Author(s):
- Verdoolaege, G.; Kaye, S.M.; Angioni, C.; Kardaunn, O.W.J.F.; Maslov, M.; Romanelli, M.; Ryter, F.; Thomsen, K.
- Abstract:
- The multi-machine ITPA Global H-mode Confinement Database has been upgraded with new data from JET with the ITER-like wall and ASDEX Upgrade with the full tungsten wall. This paper describes the new database and presents results of regression analysis to estimate the global energy confinement scaling in H-mode plasmas using a standard power law. Various subsets of the database are considered, focusing on type of wall and divertor materials, confinement regime (all H-modes, ELMy H or ELM-free) and ITER-like constraints. Apart from ordinary least squares, two other, robust regression techniques are applied, which take into account uncertainty on all variables. Regression on data from individual devices shows that, generally, the confinement dependence on density and the power degradation are weakest in the fully metallic devices. Using the multi-machine scalings, predictions are made of the confinement time in a standard ELMy H-mode scenario in ITER. The uncertainty on the scaling parameters is discussed with a view to practically useful error bars on the parameters and predictions. One of the derived scalings for ELMy H-modes on an ITER-like subset is studied in particular and compared to the IPB98(y,2) confinement scaling in engineering and dimensionless form. Transformation of this new scaling from engineering variables to dimensionless quantities is shown to result in large error bars on the dimensionless scaling. Regression analysis in the space of dimensionless variables is therefore proposed as an alternative, yielding acceptable estimates for the dimensionless scaling. The new scaling, which is dimensionally correct within the uncertainties, suggests that some dependencies of confinement in the multi- machine database can be reconciled with parameter scans in individual devices. This includes vanishingly small dependence of confinement on line-averaged density and normalized plasma pressure (β), as well as a noticeable, positive dependence on effective atomic mass and plasma triangularity. Extrapolation of this scaling to ITER yields a somewhat lower confinement time compared to the IPB98(y, 2) prediction, possibly related to the considerably weaker dependence on major radius in the new scaling (slightly above linear). Further studies are needed to compare more flexible regression models with the power law used here. In addition, data from more devices concerning possible ‘hidden variables’ could help to determine their influence on confinement, while adding data in sparsely populated areas of the parameter space may contribute to further disentangling some of the global confinement dependencies in tokamak plasmas.
- Type:
- Dataset
- Issue Date:
- March 2021

### 183. Theory based scaling of edge turbulence and implications for the scrape-off layer width

- Author(s):
- Myra, J.R.; Russell, D.A.; Zweben, S.J.
- Abstract:
- Turbulence and plasma parameter data from the National Spherical Torus Experiment NSTX [M. Ono, S.M. Kaye, Y.-K.M. Peng, G. Barnes et al., Nucl. Fusion 40, 557 (2000)] is examined and interpreted based on various theoretical estimates. In particular, quantities of interest for assessing the role of turbulent transport on the midplane scrape-off layer heat flux width are assessed. Because most turbulence quantities exhibit large scatter and little scaling within a given operation mode, this paper focuses on length and time scales and dimensionless parameters between operational modes including Ohmic, low (L), and high (H) modes using a large NSTX edge turbulence database [S.J. Zweben, W.M. Davis, S.M. Kaye, J.R. Myra et al., Nucl. Fusion 55, 093035 (2015)]. These are compared with theoretical estimates for drift and interchange rates, profile modification saturation levels, a resistive ballooning condition, and dimensionless parameters characterizing L and high H mode conditions. It is argued that the underlying instability physics governing edge turbulence in different operational modes is in fact similar, and is consistent with curvature-driven drift ballooning. Saturation physics, however, is dependent on the operational mode. Five dimensionless parameters for drift-interchange turbulence are obtained and employed to assess the important of turbulence in setting the scrape-off layer heat flux width lambda_q and its scaling. An explicit proportionality of the width lambda_q to safety factor and major radius (qR) is obtained under these conditions. Quantitative estimates and reduced model numerical simulations suggest that the turbulence mechanism is not negligible in determining lambda_q in NSTX, at least for high plasma current discharges.
- Type:
- Dataset
- Issue Date:
- November 2016

### 184. Theory of the tertiary instability and the Dimits shift from reduced drift-wave models

- Author(s):
- Zhu, Hongxuan; Zhou, Yao; Dodin, I. Y.
- Abstract:
- Tertiary modes in electrostatic drift-wave turbulence are localized near extrema of the zonal velocity $U(x)$ with respect to the radial coordinate $x$. We argue that these modes can be described as quantum harmonic oscillators with complex frequencies, so their spectrum can be readily calculated. The corresponding growth rate $\gamma_{\rm TI}$ is derived within the modified Hasegawa--Wakatani model. We show that $\gamma_{\rm TI}$ equals the primary-instability growth rate plus a term that depends on the local $U''$; hence, the instability threshold is shifted compared to that in homogeneous turbulence. This provides a generic explanation of the well-known yet elusive Dimits shift, which we find explicitly in the Terry--Horton limit. Linearly unstable tertiary modes either saturate due to the evolution of the zonal density or generate radially propagating structures when the shear $|U'|$ is sufficiently weakened by viscosity. The Dimits regime ends when such structures are generated continuously.
- Type:
- Dataset
- Issue Date:
- January 2020

### 185. Theory of the tertiary instability and the Dimits shift within a scalar model

- Author(s):
- Zhu, Hongxuan; Zhou Yao; Dodin, I.Y.
- Abstract:
- The Dimits shift is the shift between the threshold of the drift-wave primary instability and the actual onset of turbulent transport in magnetized plasma. It is generally attributed to the suppression of turbulence by zonal flows, but developing a more detailed understanding calls for consideration of specific reduced models. The modified Terry--Horton system has been proposed by St-Onge [J. Plasma Phys. {\bf 83}, 905830504 (2017)] as a minimal model capturing the Dimits shift. Here, we use this model to develop an analytic theory of the Dimits shift and a related theory of the tertiary instability of zonal flows. We show that tertiary modes are localized near extrema of the zonal velocity $U(x)$, where $x$ is the radial coordinate. By approximating $U(x)$ with a parabola, we derive the tertiary-instability growth rate using two different methods and show that the tertiary instability is essentially the primary drift-wave instability modified by the local $U''$. Then, depending on $U''$, the tertiary instability can be suppressed or unleashed. The former corresponds to the case when zonal flows are strong enough to suppress turbulence (Dimits regime), while the latter corresponds to the case when zonal flows are unstable and turbulence develops. This understanding is different from the traditional paradigm that turbulence is controlled by the flow shear $U'$. Our analytic predictions are in agreement with direct numerical simulations of the modified Terry--Horton system.
- Type:
- Dataset
- Issue Date:
- June 2020

### 186. Thermal ion kinetic effects and Landau damping in fishbone modes

- Author(s):
- Liu, Chang; Jardin, Stephen; Bao, Jian; Gorelenkov, Nikolai; Brennan, Dylan; Yang, James
- Abstract:
- The data set consists of the figures in a manuscript titled Thermal ion kinetic effects and Landau damping in fishbone modes, and plotting script used for figure generation. There are 16 figures with captions.
- Type:
- Dataset
- Issue Date:
- 22 November 2022

### 187. Three New Extreme Ultraviolet Spectrometers on NSTX-U for Impurity Monitoring

- Author(s):
- Weller, M.E.; Beiersdorfer, P.; Soukhanovskii, V.; Magee, E.W.; Scotti, F.
- Abstract:
- Three extreme ultraviolet (EUV) spectrometers have been mounted on the National Spherical Torus Experiment-Upgrade (NSTX-U). All three are flat-field grazing-incidence spectrometers and are dubbed X-ray and Extreme Ultraviolet Spectrometer (8 ñ 70 ≈), Long-Wavelength Extreme Ultraviolet Spectrometer (190 ñ 440 ≈), and Metal Monitor and Lithium Spectrometer Assembly (MonaLisa, 50 ñ 220 ≈). XEUS and LoWEUS were previously implemented on NSTX to monitor impurities from low- to high-Z sources and to study impurity transport while MonaLisa is new and provides the system increased spectral coverage. The spectrometers will also be a critical diagnostic on the planned laser blow-off (LBO) system for NSTX-U, which will be used for impurity edge and core ion transport studies, edge-transport code development, and benchmarking atomic physics codes.
- Type:
- Dataset
- Issue Date:
- November 2016

### 188. Time dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

- Author(s):
- Munoz Burgos, J.M.; Barbui, T.; Schmitz, O.; Stutman, D.; Tritz, K.
- Abstract:
- Helium line-ratios for electron temperature (Te) and density (ne) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time- dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions for several visible lines. This analysis employs both quasi-static equilibrium and time-dependent models in order to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as a helium gas-puff penetrates the plasma. Ratios between the most intense lines are usually preferred due to their higher signal to noise ratio. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.
- Type:
- Dataset
- Issue Date:
- November 2016

### 189. To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor

- Author(s):
- Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
- Abstract:
- Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.
- Type:
- Dataset
- Issue Date:
- April 2022

### 190. Topological Langmuir-cyclotron wave

- Author(s):
- Qin, Hong; Fu, Yichen
- Abstract:
- The data set consists of the figures in a manuscript tilted Topological Langmuir-cyclotron wave. There are 10 figures with captions.
- Type:
- Image
- Issue Date:
- 2022