Number of results to display per page
Search Results
32. To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor
- Author(s):
- Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
- Abstract:
- Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.
- Type:
- Dataset
- Issue Date:
- April 2022
33. Wall conditioning and ELM mitigation with boron nitride powder injection in KSTAR
- Author(s):
- Gilson, Erik; Lee, H; Bortolon, A; Choe, W; Diallo, A; Hong, SH; Lee, HM; Maingi, R; Mansfield, DK; Nagy, A; Park, SH; Song, IW; Song, JI; Yun, SW; Nazikian, R
- Abstract:
- Results from KSTAR powder injection experiments, in which tens of milligrams of boron nitride (BN) were dropped into low-power H-mode plasmas, show an improvement in wall conditions in subsequent discharges and, in some cases, a reduction or elimination of edge-localized modes (ELMs). Injected powder is distributed by the plasma flow and is deposited on the wall and, over the course of several discharges, was observed to gradually reduce recycling by 33%, and decrease both the ELM amplitude and frequency. This is the first demonstration of the use of BN for ELM mitigation. In all of these experiments, an Impurity Powder Dropper (IPD) was used to introduce precise, controllable amounts of the materials into ELMy H-mode KSTAR discharges. The plasma duration was between 10 s and 15 s, πΌπ = 500 kA, π΅π = 1.8 T, πNBI = 1.6 MW, and πECH = 0.6 MW. Plasma densities were between 2 and 3 Γ 1019 mβ3. In all cases, the pre-fill and startup gas-fueling was kept constant, suggesting that the decrease in baseline DπΌ emission is in fact due to a reduction in recycling. The results presented herein highlight the viability of powder injection for intra-shot and between-shot wall conditioning.
- Type:
- Dataset
- Issue Date:
- September 2021
34. A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)
- Author(s):
- Looby, Tom; Reinke, Matthew; Wingen, Andreas; Menard, Jonathan; Gerhardt, Stefan; Gray, Travis; Donovan, David; Unterberg, Ezekial; Klabacha, Jonathan; Messineo, Mike
- Abstract:
- The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.
- Type:
- Dataset
- Issue Date:
- March 2021
35. A thermodynamic phase transition in magnetic reconnection
- Author(s):
- Jara-Almonte, Jonathan; Hantao, Ji
- Abstract:
- Data supporting the manuscript "A thermodynamic phase transition in magnetic reconnection" published in Physical Review Letters.
- Type:
- Dataset
- Issue Date:
- 7 July 2021
36. Coupling between Alfven wave and Kelvin-Helmholtz waves in the low latitude boundary layer
- Author(s):
- Kim, Eun-Hwa; Johnson, Jay; Nykyri, Katariina
- Abstract:
- The Kelvin-Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfven velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfv\'en Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfven wave. There are remarkable differences between the primary and the secondary KH waves including wave frequency, the growth rate, and the ratio between transverse and the compressional component. The secondary KH wave energy is concentrated near the shear Alfven wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at lower Mach number. Because the transverse component of the secondary KH waves is stronger than the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.
- Type:
- Dataset
- Issue Date:
- December 2021
37. Development of a reduced model for energetic particle transport by sawteeth in tokamaks
- Author(s):
- Podesta, Mario
- Type:
- Dataset
- Issue Date:
- 9 November 2021
38. Developments on two lithium vapor-box linear test-stand experiments
- Author(s):
- Schwartz, Jacob A.; Goldston, Robert J.
- Abstract:
- The lithium vapor-box divertor is a possible fusion power exhaust solution.It uses condensation pumping to create a gradient of vapor density in a divertor slot; this should allow a stable detachment front without active feedback.As initial explorations of the concept, two test stands which take the form of three connected cylindrical stainless steel boxes are being developed: one without plasma at PPPL, to test models of lithium evaporation and flow; and one for the linear plasma device Magnum-PSI (at DIFFER in Eindhoven, The Netherlands) to test the ability of a lithium vapor cloud to induce volumetric detachment and redistribute the plasma power.The first experiment uses boxes with diameters of 6 cm, joined by apertures with diameters of 2.2 cm. Up to 1 g of Li is placed in one box, which is heated to up to 600 degrees C. The Li evaporates, then flows to and condenses in the two other, cooler boxes over several minutes. The quantity of Li transported is assessed by weighing the boxes before and after the heating cycle, and is compared to the quantity predicted to flow for the box at its measured temperature using a Direct Simulation Monte Carlo code, SPARTA. With good experimental conditions, the two values agree to within 15%.The experiment on Magnum-PSI is in the conceptual design stage.The design is assessed by simulations using the code B2.5-Eunomia.They show that when the hydrogen-ion plasma beam, with n_e = 4e20 per cubic meter, T_e = 1.5 eV, and r = 1 cm, is passed through a 16 cm long, 12 Pa, 625 degree C Li vapor cloud, the plasma heat flux and pressure on the target are significantly reduced compared to the case without Li.With the Li present, the plasma is cooled by excitation of Li neutrals followed by radiation until it volumetrically recombines, lowering the heat flux from 3.7 MW/m^2 to 0.13 MW/m^2, and the pressure is reduced by 93%, largely by collisions of hydrogen ions with neutral Li.
- Type:
- Dataset
- Issue Date:
- January 2021
39. Dynamics of filaments during the edge-localized mode crash on NSTX
- Author(s):
- Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
- Abstract:
- Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
- Type:
- Dataset
- Issue Date:
- January 2021
40. Effects of Coulomb collisions on lower hybrid drift waves inside a laboratory reconnection current sheet
- Author(s):
- Yoo, Jongsoo; Hu, Yibo; Ji, Jeong-Young; Ji, Hantao; Yamada, Masaaki; Goodman, Aaron; Bergstedt, Kendra; Alt, Andrew
- Type:
- Dataset
- Issue Date:
- 2021