« Previous |
1 - 100 of 202
|
Next »
Number of results to display per page
Search Results
2. A novel scheme for error field correction in permanent magnet stellarators
- Author(s):
- Rutkowski, Adam; Hammond, Kenneth; Zhu, Caoxiang; Gates, David; Chambliss, Amelia
- Abstract:
- Stellarators offer a promising path towards fusion reactors, but their design and construction are complicated by stringent tolerance requirements on highly complex 3D coils. A potential way to simplify the engineering requirements for stellarators is to use simple planar toroidal field coils along with permanent magnet arrays to generate shaping fields. In order to ensure sufficient field accuracy while minimizing engineering complexity and system cost, new techniques are required to correct the field produced by the permanent magnet arrays to within requirements set by plasma physics. This work describes a novel correction method developed for this purpose. This analysis is applied to the design of a quasi-axisymmetric stellarator that employs a combination of permanent magnets and planar toroidal field coils to generate its magnetic field. Analysis techniques and initial results using the method for error correction on a proposed permanent magnet stellarator are shown, and it is demonstrated that the method successfully meets the design requirements of the project.
- Type:
- Dataset
- Issue Date:
- 7 December 2022
3. Dataset for the letter "Shifting and Splitting of Resonance Lines due to Dynamical Friction in Plasmas" Phys. Rev. Lett. 130, 105101 (2023)
- Author(s):
- Duarte, Vinicius
- Type:
- Dataset
- Issue Date:
- 2023
4. Effects of collisional ion orbit loss on tokamak radial electric field and toroidal rotation in an L-mode plasma
- Author(s):
- Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
- Abstract:
- Ion orbit loss has been used to model the formation of a strong negative radial electric field Er in the tokamak edge, as well as edge momentum transport and toroidal rotation. To quantitatively measure ion orbit loss, an orbit-flux formulation has been developed and numerically applied to the gyrokinetic particle-in-cell code XGC. We study collisional ion orbit loss in an axisymmetric DIII-D L-mode plasma using gyrokinetic ions and drift-kinetic electrons. Numerical simulations, where the plasma density and temperature profiles are maintained through neutral ionization and heating, show the formation of a quasisteady negative Er in the edge. We have measured a radially outgoing ion gyrocenter flux due to collisional scattering of ions into the loss orbits, which is balanced by the radially incoming ion gyrocenter flux from confined orbits on the collisional time scale. This suggests that collisional ion orbit loss can shift Er in the negative direction compared to that in plasmas without orbit loss. It is also found that collisional ion orbit loss can contribute to a radially outgoing (counter-current) toroidal-angular-momentum flux, which is not balanced by the toroidal-angular-momentum flux carried by ions on the confined orbits. Therefore, the edge toroidal rotation shifts in the co-current direction on the collisional time scale.
- Type:
- Dataset
- Issue Date:
- 2023
5. Electromagnetic total-f algorithm for gyrokinetic particle-in-cell simulations of boundary plasma in XGC
- Author(s):
- Hager, Robert; Ku, Seung-Hoe; Sharma, Amil Y.; Churchill, Randy Michael; Chang, C. S.; Scheinberg, Aaron
- Abstract:
- The simplified delta-f mixed-variable/pull-back electromagnetic simulation algorithm implemented in XGC for core plasma simulations by Cole et al. [Phys. Plasmas 28, 034501 (2021)] has been generalized to a total-f electromagnetic algorithm that can include, for the first time, the boundary plasma in diverted magnetic geometry with neutral particle recycling, turbulence and neoclassical physics. The delta-f mixed-variable/pull-back electromagnetic implementation is based on the pioneering work by Kleiber and Mischenko et al. [Kleiber et al., Phys. Plasmas 23, 032501 (2016); Mishchenko et al., Comput. Phys. Commun. 238, 194 (2019)]. An electromagnetic demonstration simulation is performed in a DIII-D-like, H-mode boundary plasma, including a corresponding comparative electrostatic simulation, which confirms that the electromagnetic simulation is necessary for a higher fidelity understanding of the electron particle and heat transport even at the low-beta pedestal foot in the vicinity of the magnetic separatrix.
- Type:
- Dataset
- Issue Date:
- 21 November 2022
6. Laboratory study of the failed torus mechanism in arched, line-tied, magnetic flux ropes
- Author(s):
- Alt, Andrew; Ji, Hantao; Yoo, Jongsoo; Bose, Sayak; Goodman, Aaron; Yamada, Masaaki
- Abstract:
- Coronal mass ejections (CMEs) are some of the most energetic and violent events in our solar system. The prediction and understanding of CMEs is of particular importance due to the impact that they can have on Earth-based satellite systems, and in extreme cases, ground-based electronics. CMEs often occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. One potential cause for these eruptions is an ideal magnetohydrodynamic (MHD) instability such as the kink or torus instability. Previous experiments on the Magnetic Reconnection eXperiment (MRX) revealed a class of MFRs that were torus-unstable but kink-stable, which failed to erupt. These “failed-tori” went through a process similar to Taylor relaxation where the toroidal current was redistributed before the eruption ultimately failed. We have investigated this behavior through additional diagnostics that measure the current distribution at the foot points and the energy distribution before and after an event. These measurements indicate that ideal MHD effects are sufficient to explain the energy distribution changes during failed torus events. This excludes Taylor relaxation as a possible mechanism of current redistribution during an event. A new model that only requires non-ideal effects in a thin layer above the electrodes is presented to explain the observed phenomena. This work broadens our understanding of the stability of MFRs and the mechanism behind the failed torus through the improved prediction of the torus instability and through new diagnostics to measure the energy inventory and current profile at the foot points.
- Type:
- Dataset
- Issue Date:
- 2023
7. Neoclassical transport in strong gradient regions of large aspect ratio tokamaks
- Author(s):
- Trinczek, Silvia; Parra, Felix I.; Catto, Peter J.; Calvo, Iván; Landreman, Matt
- Abstract:
- We present a new neoclassical transport model for large aspect ratio tokamaks where the gradient scale lengths are of the size of the ion poloidal gyroradius. Previous work on neoclassical transport across transport barriers assumed large density and potential gradients but a small temperature gradient, or neglected the gradient of the mean parallel flow. Using large aspect ratio and low collisionality expansions, we relax these restrictive assumptions. We define a new set of variables based on conserved quantities, which simplifies the drift kinetic equation whilst keeping strong gradients, and derive equations describing the transport of particles, parallel momentum and energy by ions in the banana regime. The poloidally varying parts of density and electric potential are included. Studying contributions from both passing and trapped particles, we show that the resulting transport is dominated by trapped particles. We find that a non-zero neoclassical particle flux requires parallel momentum input which could be provided through interaction with turbulence or impurities. We derive upper and lower bounds for the energy flux across a transport barrier in both temperature and density and present example profiles and fluxes.
- Type:
- Dataset
- Issue Date:
- 2023
8. Operational Space and Performance Limiting Events in the First Physics Campaign of MAST-U
- Author(s):
- Berkery, John
- Abstract:
- The MAST-U fusion plasma research device, the upgrade to the Mega Amp Spherical Tokamak, has recently completed its first campaign of physics operation. MAST-U operated with Ohmic, or one or two neutral beams for heating, at 400-800 kA plasma current, in conventional or “SuperX” divertor configurations. Equilibrium reconstructions provide key plasma physics parameters vs. time for each discharge, and diagrams are produced which show where the prevalence of operation occurred as well as the limits in various operational spaces. When compared to stability limits, the operation of MAST-U so far has generally stayed out of the low q, low density instability region, and below the high density Greenwald limit, high beta global stability limits, and high elongation vertical stability limit. MAST-U still has the potential to reach higher elongation, which could benefit the plasma performance. Despite the majority of operation happening below established stability limits, disruptions did occur in the flat-top phase of MAST-U plasmas. The reasons for these disruptions are highlighted, and possible strategies to avoid them and to extend the operational space of MAST-U in future campaigns are discussed.
- Type:
- Dataset
- Issue Date:
- 18 January 2023
9. Reduced Physics Model of the Tokamak Scrape-off-Layer for Pulse Design
- Author(s):
- Zhang, Xin
- Abstract:
- The dynamic interplay between the core and the edge plasma has important consequences in the confinement and heating of fusion plasma. The transport of the Scrape-Off-Layer (SOL) plasma imposes boundary conditions on the core plasma, and neutral transport through the SOL influences the core plasma sourcing. In order to better study these effects in a self-consistent, time-dependent fashion with reasonable turn-around time, a reduced model is needed. In this paper we introduce the SOL Box Model, a reduced SOL model that calculates the plasma temperature and density in the SOL given the core-to-edge particle and power fluxes and recycling coefficients. The analytic nature of the Box Model allows one to readily incorporate SOL physics in time-dependent transport solvers for pulse design applications in the control room. Here we demonstrate such a coupling with the core transport solver TRANSP and compare the results with density and temperature measurements, obtained through Thomson scattering and Langmuir probes, of an NSTX discharge. Implications for future interpretive and predictive simulations are discussed.
- Type:
- Dataset
- Issue Date:
- January 2023
10. Role of fast ions in spontaneous neoclassical tearing mode instabilities in NSTX
- Author(s):
- Yang, James; Podesta, Mario; Fredrickson, Eric; Liu, Chang; Berkery, Jack; Poli, Francesca
- Type:
- Dataset
- Issue Date:
- 2023
11. Thermal ion kinetic effects and Landau damping in fishbone modes
- Author(s):
- Liu, Chang; Jardin, Stephen; Bao, Jian; Gorelenkov, Nikolai; Brennan, Dylan; Yang, James
- Abstract:
- The data set consists of the figures in a manuscript titled Thermal ion kinetic effects and Landau damping in fishbone modes, and plotting script used for figure generation. There are 16 figures with captions.
- Type:
- Dataset
- Issue Date:
- 22 November 2022
12. Topological Langmuir-cyclotron wave
- Author(s):
- Qin, Hong; Fu, Yichen
- Abstract:
- The data set consists of the figures in a manuscript tilted Topological Langmuir-cyclotron wave. There are 10 figures with captions.
- Type:
- Image
- Issue Date:
- 2022
13. Correlation between the relative blob fraction and plasma parameters in NSTX
- Author(s):
- Zweben, S,J.; Banerjee, S; Bisai, N; Diallo, A; Lampert, M; LeBlanc, B; Myra, JR; Russell, D.A.
- Abstract:
- data of figures used in this publication
- Type:
- Dataset
- Issue Date:
- 18 January 2022
14. Data for "The value of fusion energy to a decarbonized United States electric grid"
- Author(s):
- Schwartz, Jacob A.; Ricks, Wilson; Kolemen, Egemen; Jenkins, Jesse D.
- Abstract:
- Fusion could be a part of future decarbonized electricity systems, but it will need to compete with other technologies. In particular, pulsed tokamaks plants have a unique operational mode, and evaluating which characteristics make them economically competitive can help select between design pathways. Using a capacity expansion and operations model, we determined cost thresholds for pulsed tokamaks to reach a range of penetration levels in a future decarbonized US Eastern Interconnection. The required capital cost to reach a fusion capacity of 100 GW varied from $3000 to $7200/kW, and the equilibrium penetration increases rapidly with decreasing cost. The value per unit power capacity depends on the variable operational cost and on cost of its competition, particularly fission, much more than on the pulse cycle parameters. These findings can therefore provide initial cost targets for fusion more generally in the United States.
- Type:
- Dataset
- Issue Date:
- 2022
15. Design of an arrangement of cubic magnets for a quasi-axisymmetric stellarator experiment
- Author(s):
- Hammond, Kenneth; Zhu, Caoxiang; Corrigan, Keith; Gates, David; Lown, Robert; Mercurio, Robert; Qian, Tony; Zarnstorff, Michael
- Abstract:
- The usage of permanent magnets to shape the confining field of a stellarator has the potential to reduce or eliminate the need for non-planar coils. As a proof-of-concept for this idea, we have developed a procedure for designing an array of cubic permanent magnets that works in tandem with a set of toroidal-field coils to confine a stellarator plasma. All of the magnets in the design are constrained to have identical geometry and one of three polarization types in order to simplify fabrication while still producing sufficient field accuracy. We present some of the key steps leading to the design, including the geometric arrangement of the magnets around the device, the procedure for optimizing the polarizations according to three allowable magnet types, and the choice of magnet types to be used. We apply these methods to design an array of rare-Earth permanent magnets that can be paired with a set of planar toroidal-field coils to confine a quasi-axisymmetric plasma with a toroidal magnetic field strength of about 0.5 T on axis.
- Type:
- Dataset
- Issue Date:
- 2022
16. Effects of collisional ion orbit loss on neoclassical tokamak radial electric fields
- Author(s):
- Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
- Abstract:
- Ion orbit loss is considered important for generating the radially inward electric field Er in a tokamak edge plasma. In particular, this effect is emphasized in diverted tokamaks with a magnetic X point. In neoclassical equilibria, Coulomb collisions can scatter ions onto loss orbits and generate a radially outward current, which in steady state is balanced by the radially inward current from viscosity. To quantitatively measure this loss-orbit current in an edge pedestal, an ion-orbit-flux diagnostic has been implemented in the axisymmetric version of the gyrokinetic particle-in-cell code XGC. As the first application of this diagnostic, a neoclassical DIII-D H-mode plasma is studied using gyrokinetic ions and adiabatic electrons. The validity of the diagnostic is demonstrated by studying the collisional relaxation of Er in the core. After this demonstration, the loss-orbit current is numerically measured in the edge pedestal in quasisteady state. In this plasma, it is found that the radial electric force on ions from Er approximately balances the ion radial pressure gradient in the edge pedestal, with the radial force from the plasma flow term being a minor component. The effect of orbit loss on Er is found to be only mild.
- Type:
- Dataset
- Issue Date:
- 2022
17. Electron Temperature Gradient Driven Transport Model for Tokamak Plasmas
- Author(s):
- Rafiq, Tariq; Wilson, Christopher; Luo, Lixiang; Weiland, Jan; Schuster, Eugenio; Pankin, Alexei; Guttenfelder, Walter; Kaye, Stan
- Abstract:
- A new model for electron temperature gradient (ETG) modes is developed as a component of the Multi-Mode anomalous transport module [T. Rafiq \textit{et al.,} Phys Plasmas \textbf{20}, 032506 (2013)] to predict a time dependent electron temperature profile in conventional and low aspect ratio tokamaks. This model is based on two-fluid equations that govern the dynamics of low-frequency short- and long-wavelength electromagnetic toroidal ETG driven drift modes. A low collisionality NSTX discharge is used to scan the plasma parameter dependence on the ETG real frequency, growth rate, and electron thermal diffusivity. Electron thermal transport is discovered in the deep core region where modes are more electromagnetic in nature. Several previously reported gyrokinetic trends are reproduced, including the dependencies of density gradients, magnetic shear, $\beta$ and gradient of $\beta$ $(\betap)$, collisionality, safety factor, and toroidicity, where $\beta$ is the ratio of plasma pressure to the magnetic pressure. The electron heat diffusivity associated with the ETG mode is discovered to be on a scale consistent with the experimental diffusivity determined by power balance analysis.
- Type:
- Dataset
- Issue Date:
- 30 August 2022
18. Electron heating in 2-D: combining Fermi-Ulam acceleration and magnetic-moment non-adiabaticity in a mirror-configuration plasma
- Author(s):
- Swanson, Charles; Galea, Christopher
- Abstract:
- This dataset contains the files (scripts and data) required to produce the figures of the above reference.
- Type:
- Dataset
- Issue Date:
- 2022
19. Energetic particle optimization of quasi-axisymmetric stellarator equilibria
- Author(s):
- LeViness, Alexandra; Schmitt, John; Lazerson, Samuel; Bader, Aaron; Faber, Benjamin; Hammond, Kenneth; Gates, David
- Abstract:
- An important goal of stellarator optimization is to achieve good confinement of energetic particles such as, in the case of a reactor, alphas created by Deuterium-Tritium (D-T) fusion. In this work, a fixed-boundary stellarator equilibrium was re-optimized for energetic particle confinement via a two-step process: first, by minimizing deviations from quasi-axisymmetry (QA) on a single flux surface near the mid-radius, and secondly by maintaining this improved quasi-axisymmetry while minimizing the analytical quantity ΓC , which represents the angle between magnetic flux surfaces and contours of J||, the second adiabatic invariant. This was performed multiple times, resulting in a group of equilibria with significantly reduced energetic particle losses, as evaluated by Monte Carlo simulations of alpha particles in scaled-up versions of the equilibria. This is the first time that energetic particle losses in a QA stellarator have successfully been reduced by optimizing ΓC . The relationship between energetic particle losses and metrics such as QA error (Eqa) and ΓC in this set of equilibria were examined via statistical methods and a nearly linear relationship between volume-averaged ΓC and prompt particle losses was found.
- Type:
- Dataset
- Issue Date:
- 2022
20. Feasibility study of a high spatial and time resolution beam emission spectroscopy diagnostic for localized density fluctuation measurements in Lithium Tokamak eXperiment-β (LTX-β)
- Author(s):
- Banerjee, Santanu; Boyle, Dennis; Mann, Anurag; Majeski, Richard; Kaita, Robert; Smith, David; von Hellermann, Manfred; Hansen, Christopher; Capechhi, William; Elliott, Drew
- Abstract:
- Datasets for the plots used in the aforesaid publication
- Type:
- Dataset
- Issue Date:
- 2022
21. Fusion Pilot Plant performance and the role of a Sustained High Power Density tokamak
- Author(s):
- Menard, Jonathan; Grierson, Brian; Brown, Tom; Rana, Chirag; Zhai, Yuhu; Poli, Francesca; Maingi, Rajesh; Guttenfelder, Walter; Snyder, Philip
- Abstract:
- Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.
- Type:
- Dataset
- Issue Date:
- January 2022
22. Global gyrokinetic study of shaping effects on electromagnetic modes at NSTX aspect ratio with ad hoc parallel magnetic perturbation effects
- Author(s):
- Sharma, A. Y.; Cole, M. D. J.; Görler, T.; Chen, Y.; Hatch, D. R.; Guttenfelder, W.; Hager, R.; Sturdevant, B. J.; Ku, S.; Chang, C. S.
- Abstract:
- Plasma shaping may have a stronger effect on global turbulence in tight-aspect-ratio tokamaks than in conventional-aspect-ratio tokamaks due to the higher toroidicity and more acute poloidal asymmetry in the magnetic field. In addition, previous local gyrokinetic studies have shown that it is necessary to include parallel magnetic field perturbations in order to accurately compute growth rates of electromagnetic modes in tight-aspect-ratio tokamaks. In this work, the effects of elongation and triangularity on global, ion-scale, linear electromagnetic modes are studied at NSTX aspect ratio and high plasma beta using the global gyrokinetic particle-in-cell code XGC. The effects of compressional magnetic perturbations are approximated via a well-known modification to the particle drifts that was developed for flux-tube simulations [N. Joiner et al., Phys. Plasmas 17, 072104 (2010)], without proof of its validity in a global simulation. Magnetic equilibria are re-constructed for each distinct plasma profile that is used. Coulomb collision effects are not considered. Within the limitations imposed by the present study, it is found that linear growth rates of electromagnetic modes (collisionless microtearing modes and kinetic ballooning modes) are significantly reduced by NSTX-like shaping. For example, growth rates of kinetic ballooning modes at high beta are reduced to the level of that of collisionless trapped electron modes.
- Type:
- Dataset
- Issue Date:
- 2022
23. Gyrokinetic simulations of momentum flux parasitic to free-energy transfer
- Author(s):
- Stoltzfus-Dueck, T; Hornsby, W A; Grosshauser, S R
- Abstract:
- Ion Landau damping interacts with a portion of the E×B drift to cause a non-diffusive outward flux of co-current toroidal angular momentum. Quantitative evaluation of this momentum flux requires nonlinear simulations to determine fL, the fraction of fluctuation free energy that passes through ion Landau damping, in fully developed turbulence. Nonlinear gyrokinetic simulations with the GKW code confirm the presence of the systematic symmetry-breaking momentum flux. For simulations with adiabatic electrons, fL scales inversely with the ion temperature gradient, because only the ion curvature drift can transfer free energy to the electrostatic potential. Although kinetic electrons should in principle relax this restriction, the ion Landau damping measured in collisionless kinetic-electron simulations remained at low levels comparable with ion-curvature-drift transfer, except when magnetic shear was strong. A set of simulations scanning the electron pitch-angle scattering rate showed only a weak variation of fL with the electron collisionality. However, collisional-electron simulations with electron temperature greater than ion temperature unambiguously showed electron-curvature-drift transfer supporting ion Landau damping, leading to a corresponding enhancement of the symmetry-breaking momentum flux.
- Type:
- Dataset
- Issue Date:
- 2022
24. Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability
- Author(s):
- Wang, Yin; Gilson, Erik P.; Ebrahimi, Fatima; Goodman, Jeremy; Caspary, Kyle J.; Winarto, Himawan W.; Ji, Hantao
- Abstract:
- This dataset provides the source data of figures in the main text of the paper "Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability" accepted by Nature Communications.
- Type:
- Dataset
- Issue Date:
- 2022
25. Initial Results from Boron Powder Injection Experiments in WEST Lower Single Null L-mode Plasmas
- Author(s):
- Bodner, Grant; Gallo, Alberto; Diallo, Ahmed; Lunsford, Robert; Moreau, Philippe; Nagy, Alex; Pellissier, Francis-Pierre; Guillemaut, Christophe; Gunn, James; Bourdelle, Clarisse; Desgranges, Corinne; Manas, Pierre; Bortolon, Alessandro; Klepper, Christopher; Tsitrone, Emanuelle; Unterberg, Ezekial; Vermare, Laure
- Abstract:
- Using a recently installed impurity powder dropper (IPD), boron powder (< 150 μm) was injected into lower single null (LSN) L-mode discharges in WEST. IPDs possibly enable real-time wall conditioning of the plasma-facing components and may help to facilitate H-mode access in the full-tungsten environment of WEST. The discharges in this experiment featured Ip = 0.5 MA, BT = 3.7 T, q95 = 4.3, tpulse = 12–30 s, ne,0 ~ 4×1019 m-2, and PLHCD ~ 4.5 MW. Estimates of the deuterium and impurity particle fluxes, derived from a combination of visible spectroscopy measurements and their corresponding S/XB coefficients, showed decreases of ~ 50% in O+, N+, and C+ populations during powder injection and a moderate reduction of these low-Z impurities (~ 50%) and W (~ 10%) in the discharges that followed powder injection. Along with the improved wall conditions, WEST discharges with B powder injection observed improved confinement, as the stored energy WMHD, neutron rate, and electron temperature Te increased significantly (10–25% for WMHD and 60–200% for the neutron rate) at constant input power. These increases in confinement scale up with the powder drop rate and are likely due to the suppression of ion temperature gradient (ITG) turbulence from changes in Zeff and/or modifications to the electron density profile.
- Type:
- Dataset
- Issue Date:
- 2022
26. Internal Rotation of ELM Filaments on NSTX
- Author(s):
- Lampert, Mate; Diallo, Ahmed; Zweben, Stewart; Myra, Jim
- Abstract:
- The data is formatted to text files. A corresponding file is provided for each figure.
- Type:
- Dataset
- Issue Date:
- September 2022
27. Interpreting ion-energy distributions using charge exchange emitted from deeply kinetic field-reversed-configuration plasmas
- Author(s):
- Glasser, Alan; Cohen, Samuel
- Type:
- Image
- Issue Date:
- 2022
28. Linear ion-scale micro-stability analysis of high and low-collisionality NSTX discharges and NSTX-U projections
- Author(s):
- Clauser, Cesar; Guttenfelder, Walter; Rafiq, Tariq; Schuster, Eugenio
- Type:
- Dataset
- Issue Date:
- 6 September 2022
29. Nonlinear growth of magnetic islands by passing fast ions in NSTX
- Author(s):
- Yang, James; Fredrickson, Eric; Podestà, Mario; Poli, Francesca
- Abstract:
- The growth of magnetic islands in NSTX is modeled successfully, with the consideration of passing fast ions. It is shown that a good quantitative agreement between simulation and experimental measurement can be achieved when the uncompensated cross-field current induced by passing fast ions is included in the island growth model. The fast ion parameters, along with other equilibrium parameters, are obtained self-consistently using the TRANSP code with the assumptions of the ‘kick’ model (Podestà et al 2017 Plasma Phys. Control. Fusion 59 095008). The results show that fast ions can contribute to overcoming the stabilizing effect of polarization current for magnetic island growth.
- Type:
- Dataset
- Issue Date:
- 2022
30. Novel angular velocity estimation technique for plasma filaments
- Author(s):
- Mate, Lampert; Ahmed, Diallo; Stewart, Zweben
- Abstract:
- Data for the figures in text format. Please read the README file for detailed description.
- Type:
- Dataset
- Issue Date:
- December 2022
31. Parametric dependencies of resonant layer responses across linear, two-fluid, drift-MHD regimes
- Author(s):
- Park, Jong-Kyu
- Abstract:
- Non-axisymmetric magnetic fields arising in a tokamak either by external or internal perturbations can induce complex non-ideal MHD responses in their resonant surfaces while remaining ideally evolved elsewhere. This layer response can be characterized in a linear regime by a single parameter called the inner-layer Delta, which enables outer-layer matching and the prediction of torque balance to non-linear island regimes. Here, we follow strictly one of the most comprehensive analytic treatments including two-fluid and drift MHD effects and keep the fidelity of the formulation by incorporating the numerical method based on the Riccati transformation when quantifying the inner-layer Delta. The proposed scheme reproduces not only the predicted responses in essentially all asymptotic regimes but also with continuous transitions as well as improved accuracies. In particular, the Delta variations across the inertial regimes with viscous or semi-collisional effects have been further resolved, in comparison with additional analytic solutions. The results imply greater shielding of the electromagnetic torque at the layer than what would be expected by earlier work when the viscous or semi-collisional effects can compete against the inertial effects, and also due to the intermediate regulation by kinetic Alfven wave resonances as rotation slows down. These are important features that can alter the nonaxisymmetric plasma responses including the field penetration by external fields or island seeding process in rotating tokamak plasmas.
- Type:
- Dataset
- Issue Date:
- 26 July 2022
32. Plasma Facing Components with Capillary Porous System and Liquid Metal Coolant Flow
- Author(s):
- Khodak, Andrei; Maingi, Rajesh
- Abstract:
- Liquid metal can create a renewable protective surface on plasma facing components (PFC), with an additional advantage of deuterium pumping and the prospect of tritium extraction if liquid lithium (LL) is used and maintained below 450 C, the temperature above which LL vapor pressure begins to contaminate the plasma. LM can also be utilized as an efficient coolant, driven by the Lorentz force created with the help of the magnetic field in fusion devices. Capillary porous systems can serve as a conduit of LM and simultaneously provide stabilization of the LM flow, protecting against spills into the plasma. Recently a combination of a fast-flowing LM cooling system with a porous plasma facing wall (CPSF) was investigated [Khodak and Maingi (2021)]. The system takes an advantage of a magnetohydrodynamics velocity profile, as well as attractive LM properties to promote efficient heat transfer from the plasma to the LL at low pumping energy cost, relative to the incident heat flux on the PFC. In case of a disruption leading to excessive heat flux from the plasma to the LM PFCs, LL evaporation can stabilize the PFC surface temperature, due to high evaporation heat and apparent vapor shielding. The proposed CPSF was optimized analytically for the conditions of a Fusion Nuclear Science Facility [Kessel et al. (2019)]: 10T toroidal field and 10 MW/m2 peak incident heat flux. Computational fluid dynamics analysis confirmed that a CPSF system with 2.5 mm square channels can pump enough LL so that no additional coolant is needed.
- Type:
- Dataset and Image
- Issue Date:
- 2021
33. Source data for "Observation of Axisymmetric Standard Magnetorotational Instability in the Laboratory"
- Author(s):
- Wang, Yin; Gilson, Erik; Ebrahimi, Fatima; Goodman, Jeremy; Ji, Hantao
- Abstract:
- Source data for the article "Observation of Axisymmetric Standard Magnetorotational Instability in the Laboratory" published in Physical Review Letters.
- Type:
- Dataset
- Issue Date:
- September 2022
34. Streaked Sub-ps-resolution X-ray Line Shapes and Implications for Solid-density Plasma Dynamics
- Author(s):
- Kraus, B. Frances; Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Hollinger, R.; Wang, Shoujun; Song, Huanyu; Nedbailo, R.; Rocca, J. J.; Mancini, R. C.; MacDonald, M. J.; Beatty, C. B.; Shepherd, R.
- Abstract:
- A high-resolution x-ray spectrometer was coupled with an ultrafast x-ray streak camera to produce time-resolved line shape spectra measured from hot, solid-density plasmas. A Bragg crystal was placed near a laser-produced plasma to maximize throughput; alignment tolerances were established by raytracing. The streak camera produced single-shot time-resolved spectra, heavily sloped due to photon time-of-flight differences, with sufficient reproducibility to accumulate photon statistics. The images are time-calibrated by the slope of streaked spectra and dewarped to generate spectra emitted at different times defined at the source. The streaked spectra demonstrate the evolution of spectral shoulders and other features on ps timescales, showing the feasibility of plasma parameter measurements on the rapid timescales necessary to study high-energy-density plasmas.
- Type:
- Dataset
- Issue Date:
- 2022
35. Study of Stark Broadening of Krypton Helium-beta Lines and Estimation of Electron Density and Temperature in NIF Compressed Capsules
- Author(s):
- Hill, K. W.; Gao, L.; Kraus, B. F.; Bitter, M.; Efthimion, P. C.; Pablant, N. A.; Schneider, M. B.; Thorn, D. B.; Chen, H.; Kauffman, R. L.; Liedahl, D. A.; MacDonald, M. J.; MacPhee, A. G.; Scott, H. A.; Stoupin, S.; Doron, R.; Stambulchik, E.; Maron, Y.; Lahmann, B.
- Abstract:
- Numerical data used to draw the figures in the manuscript
- Type:
- Dataset
- Issue Date:
- 6 June 2022
36. Supplemental material for: Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane
- Author(s):
- Swanson, CPS; Kahn, S; Rana, C; Titus, PH; Brooks, AW; Guttenfelder, W; Zhai, Y; Brown, TG; Menard, JE
- Abstract:
- This is the supplemental material for the manuscript "Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane" submitted to Fusion Engineering and Design. This material includes PDF writeups of the derivations of the axisymmetric extended plane strain model, the elastic properties smearing model, and 20+ MATLAB scripts and functions which implement the model and generate the figures in the paper.
- Type:
- collection, Dataset, and Software
- Issue Date:
- 2022
37. Temporal Structure of Blobs in NSTX
- Author(s):
- Lampert, Mate
- Type:
- Dataset
- Issue Date:
- 21 July 2022
38. The dispersion and propagation of topological Langmuir-cyclotron waves in cold magnetized plasmas
- Author(s):
- Fu, Yichen; Qin, Hong
- Abstract:
- The time evolution of the topological Langmuir-Cyclotron waves excited by an external source.
- Type:
- moving image
- Issue Date:
- 2022
39. To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor
- Author(s):
- Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
- Abstract:
- Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.
- Type:
- Dataset
- Issue Date:
- April 2022
40. Wall conditioning and ELM mitigation with boron nitride powder injection in KSTAR
- Author(s):
- Gilson, Erik; Lee, H; Bortolon, A; Choe, W; Diallo, A; Hong, SH; Lee, HM; Maingi, R; Mansfield, DK; Nagy, A; Park, SH; Song, IW; Song, JI; Yun, SW; Nazikian, R
- Abstract:
- Results from KSTAR powder injection experiments, in which tens of milligrams of boron nitride (BN) were dropped into low-power H-mode plasmas, show an improvement in wall conditions in subsequent discharges and, in some cases, a reduction or elimination of edge-localized modes (ELMs). Injected powder is distributed by the plasma flow and is deposited on the wall and, over the course of several discharges, was observed to gradually reduce recycling by 33%, and decrease both the ELM amplitude and frequency. This is the first demonstration of the use of BN for ELM mitigation. In all of these experiments, an Impurity Powder Dropper (IPD) was used to introduce precise, controllable amounts of the materials into ELMy H-mode KSTAR discharges. The plasma duration was between 10 s and 15 s, 𝐼𝑝 = 500 kA, 𝐵𝑇 = 1.8 T, 𝑃NBI = 1.6 MW, and 𝑃ECH = 0.6 MW. Plasma densities were between 2 and 3 × 1019 m−3. In all cases, the pre-fill and startup gas-fueling was kept constant, suggesting that the decrease in baseline D𝛼 emission is in fact due to a reduction in recycling. The results presented herein highlight the viability of powder injection for intra-shot and between-shot wall conditioning.
- Type:
- Dataset
- Issue Date:
- September 2021
41. A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)
- Author(s):
- Looby, Tom; Reinke, Matthew; Wingen, Andreas; Menard, Jonathan; Gerhardt, Stefan; Gray, Travis; Donovan, David; Unterberg, Ezekial; Klabacha, Jonathan; Messineo, Mike
- Abstract:
- The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.
- Type:
- Dataset
- Issue Date:
- March 2021
42. A thermodynamic phase transition in magnetic reconnection
- Author(s):
- Jara-Almonte, Jonathan; Hantao, Ji
- Abstract:
- Data supporting the manuscript "A thermodynamic phase transition in magnetic reconnection" published in Physical Review Letters.
- Type:
- Dataset
- Issue Date:
- 7 July 2021
43. Coupling between Alfven wave and Kelvin-Helmholtz waves in the low latitude boundary layer
- Author(s):
- Kim, Eun-Hwa; Johnson, Jay; Nykyri, Katariina
- Abstract:
- The Kelvin-Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfven velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfv\'en Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfven wave. There are remarkable differences between the primary and the secondary KH waves including wave frequency, the growth rate, and the ratio between transverse and the compressional component. The secondary KH wave energy is concentrated near the shear Alfven wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at lower Mach number. Because the transverse component of the secondary KH waves is stronger than the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.
- Type:
- Dataset
- Issue Date:
- December 2021
44. Development of a reduced model for energetic particle transport by sawteeth in tokamaks
- Author(s):
- Podesta, Mario
- Type:
- Dataset
- Issue Date:
- 9 November 2021
45. Developments on two lithium vapor-box linear test-stand experiments
- Author(s):
- Schwartz, Jacob A.; Goldston, Robert J.
- Abstract:
- The lithium vapor-box divertor is a possible fusion power exhaust solution.It uses condensation pumping to create a gradient of vapor density in a divertor slot; this should allow a stable detachment front without active feedback.As initial explorations of the concept, two test stands which take the form of three connected cylindrical stainless steel boxes are being developed: one without plasma at PPPL, to test models of lithium evaporation and flow; and one for the linear plasma device Magnum-PSI (at DIFFER in Eindhoven, The Netherlands) to test the ability of a lithium vapor cloud to induce volumetric detachment and redistribute the plasma power.The first experiment uses boxes with diameters of 6 cm, joined by apertures with diameters of 2.2 cm. Up to 1 g of Li is placed in one box, which is heated to up to 600 degrees C. The Li evaporates, then flows to and condenses in the two other, cooler boxes over several minutes. The quantity of Li transported is assessed by weighing the boxes before and after the heating cycle, and is compared to the quantity predicted to flow for the box at its measured temperature using a Direct Simulation Monte Carlo code, SPARTA. With good experimental conditions, the two values agree to within 15%.The experiment on Magnum-PSI is in the conceptual design stage.The design is assessed by simulations using the code B2.5-Eunomia.They show that when the hydrogen-ion plasma beam, with n_e = 4e20 per cubic meter, T_e = 1.5 eV, and r = 1 cm, is passed through a 16 cm long, 12 Pa, 625 degree C Li vapor cloud, the plasma heat flux and pressure on the target are significantly reduced compared to the case without Li.With the Li present, the plasma is cooled by excitation of Li neutrals followed by radiation until it volumetrically recombines, lowering the heat flux from 3.7 MW/m^2 to 0.13 MW/m^2, and the pressure is reduced by 93%, largely by collisions of hydrogen ions with neutral Li.
- Type:
- Dataset
- Issue Date:
- January 2021
46. Dynamics of filaments during the edge-localized mode crash on NSTX
- Author(s):
- Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
- Abstract:
- Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
- Type:
- Dataset
- Issue Date:
- January 2021
47. Effects of Coulomb collisions on lower hybrid drift waves inside a laboratory reconnection current sheet
- Author(s):
- Yoo, Jongsoo; Hu, Yibo; Ji, Jeong-Young; Ji, Hantao; Yamada, Masaaki; Goodman, Aaron; Bergstedt, Kendra; Alt, Andrew
- Type:
- Dataset
- Issue Date:
- 2021
48. Enhancement of edge turbulence concomitant with ELM suppression during boron powder injection in EAST
- Author(s):
- Sun, Zhen; Maingi, Rajesh; Diallo, Ahmed; Xu, Wei; Qian, Yuzhong; Tritz, Kevin; Ye, Yang; Li, Chenglong; Xu, Zhong; Wang, Yifeng; Kaixuan, Ye; Bortolon, A.; Nagy, Alex; Zhang, Ling; Duan, Yanmin; Lu, Zhiyuan; Wang, Huiqian; Shi, Tonghui; Zhao, Hailin; Gao, Wei; Xu, Jichan; Chen, Ran; Huang, Ming; Zuo, Guizhong; Xu, Guosheng; Gong, Xianzu; Hu, Jiansheng
- Abstract:
- Data supporting the manuscript "Enhancement of edge turbulence concomitant with ELM suppression during boron powder injection in EAST" published in Plasma of Physics, 2021.
- Type:
- Dataset and Image
- Issue Date:
- August 2021
49. Hybrid simulations of sub-cyclotron compressional and global Alfven Eigenmode stability in spherical tokamaks
- Author(s):
- Lestz, J.B.; Belova, E.V.; Gorelenkov, N.N
- Abstract:
- A comprehensive numerical study has been conducted in order to investigate the stability of beam-driven, sub-cyclotron frequency compressional (CAE) and global (GAE) Alfven Eigenmodes in low aspect ratio plasmas for a wide range of beam parameters. The presence of CAEs and GAEs has previously been linked to anomalous electron temperature profile flattening at high beam power in NSTX experiments, prompting further examination of the conditions for their excitation. Linear simulations are performed with the hybrid MHD-kinetic initial value code HYM in order to capture the general Doppler-shifted cyclotron resonance that drives the modes. Three distinct types of modes are found in simulations -- co-CAEs, cntr-GAEs, and co-GAEs -- with differing spectral and stability properties. The simulations reveal that unstable GAEs are more ubiquitous than unstable CAEs, consistent with experimental observations, as they are excited at lower beam energies and generally have larger growth rates. Local analytic theory is used to explain key features of the simulation results, including the preferential excitation of different modes based on beam injection geometry and the growth rate dependence on the beam injection velocity, critical velocity, and degree of velocity space anisotropy. The background damping rate is inferred from simulations and estimated analytically for relevant sources not present in the simulation model, indicating that co-CAEs are closer to marginal stability than modes driven by the cyclotron resonances.
- Type:
- Dataset
- Issue Date:
- March 2021
50. Hyperdiffusion of dust particles in a turbulent tokamak plasma
- Author(s):
- Nespoli, Federico; Kaganovich, Igor; Autricque, Adrien; Marandet, Yannick; Tamain, Patrick
- Abstract:
- The effect of plasma turbulence on the trajectories of dust particles is investigated for the first time. The dynamics of dust particles is computed using the ad-hoc developed Dust Injection Simulator code, using a 3D turbulent plasma background computed with the TOKAM3X code. As a result, the evolution of the particle trajectories is governed by the ion drag force, and the shape of the trajectory is set by the Stokes number $St\propto a_d/n_0$, with $a_d$ the dust radius and $n_0$ the density at the separatrix. The plasma turbulence is observed to scatter the dust particles, exhibiting a hyperdiffusive regime in all cases. The amplitude of the turbulent spread of the trajectories $\Delta r^2$ is shown to depend on the ratio $Ku/St$, with $Ku\propto u_{rms}$ the Kubo number and $u_{rms}$ the fluctuation level of the plasma flow. These results are compared with a simple analytical model, predicting $\Delta r^2\propto (Ku/St)^2t^3$, or $\Delta r^2\propto (u_{rms}n_0/a_d)^2t^3$. As the dust is heated by the plasma fluxes, thermionic emission sets the dust charge, originally negative, to slightly positive values. This results in a substantial reduction of the ion drag force through the suppression of its Coulomb scattering component. The dust grain inertia is then no longer negligible, and drives the transition from a hyperdiffusive regime towards a ballistic one.
- Type:
- Article
- Issue Date:
- July 2021
51. Impact of edge harmonic oscillations on the divertor heat flux in NSTX
- Author(s):
- Gan, Kaifu; Gray, Travis; Zweben, Stewart; Eric, Fredrickson; Maingi, Rajesh; Battaglia, Devon; McLean, Adam; Wirth, Brian
- Abstract:
- All the data was uploaded with .cvs file, we have not uploaded the figure 1 data since it is just photo show field of view of IR and GPI diagnostic.
- Type:
- Dataset
- Issue Date:
- 6 December 2021
52. Implementation of higher-order velocity mapping between marker particles and grid in the particle-in-cell code XGC
- Author(s):
- Mollen Albert; Adams Mark F.; Knepley Matthew G.; Hager Robert; Chang C. S.
- Abstract:
- The global total-f gyrokinetic particle-in-cell code XGC, used to study transport in magnetic fusion plasmas or to couple with a core gyrokinetic code while functioning as an edge gyrokinetic code, implements a 5-dimensional (5D) continuum grid to perform the dissipative operations, such as plasma collisions, or to exchange the particle distribution function information with a core code. To transfer the distribution function between marker particles and a rectangular 2D velocity-space grid, XGC employs a bilinear mapping. The conservation of particle density and momentum is accurate enough in this bilinear operation, but the error in the particle energy conservation can become undesirably large and cause non-negligible numerical heating in a steep edge pedestal. In the present work we update XGC to use a novel mapping technique, based on the calculation of a pseudo-inverse, to exactly preserve moments up to the order of the discretization space. We describe the details of the implementation and we demonstrate the reduced interpolation error for a tokamak test plasma by using 1st- and 2nd-order elements with the pseudo-inverse method and comparing to the bilinear mapping.
- Type:
- Dataset
- Issue Date:
- March 2021
53. Initial operation and data processing on a system for real-time evaluation of Thomson scattering signals on the Large Helical Device
- Author(s):
- Hammond, K. C.; Laggner, F. M.; Diallo, A.; Doskoczynski, S.; Freeman, C.; Funaba, H.; Gates, D.A.; Rozenblat, R.; Tchilinguirian, G.; Xing, Z.; Yamada, I.; Yasuhara, R.; Zimmer, G.; Kolemen, E.
- Abstract:
- A scalable system for real-time analysis of electron temperature and density based on signals from the Thomson scattering diagnostic, initially developed for and installed on the NSTX-U experiment, was recently adapted for the Large Helical Device (LHD) and operated for the first time during plasma discharges. During its initial operation run, it routinely recorded and processed signals for four spatial points at the laser repetition rate of 30 Hz, well within the system's rated capability for 60 Hz. We present examples of data collected from this initial run and describe subsequent adaptations to the analysis code to improve the fidelity of the temperature calculations.
- Type:
- Dataset
- Issue Date:
- 2021
54. Inversion technique to obtain local ion temperature profiles for an axisymmetric plasma with toroidal and radial velocities
- Author(s):
- Bell, Ronald E.
- Abstract:
- A matrix inversion technique is derived to calculate local ion temperature from line-integrated measurements of an extended emission source in an axisymmetric plasma which exactly corrects for both toroidal velocity and radial velocity components. Local emissivity and toroidal velocity can be directly recovered from line-integrated spectroscopic measurements, but an independent measurement of the radial velocity is necessary to complete the temperature inversion. The extension of this technique to handle the radial velocity is relevant for magnetic reconnection and merging compression devices where temperature inversion from spectroscopic measurements is desired. A simulation demonstrates the effects of radial velocity on the determination of ion temperature.
- Type:
- Dataset
- Issue Date:
- February 2021
55. Lower Hybrid Drift Waves During Guide Field Reconnection
- Author(s):
- Yoo, Jongsoo; Jeong-Young, Ji; M. V., Ambat; Shan, Wang; Hantao, Ji; Jenson, Lo; Bowen, Li; Yang, Ren; J., Jara-Almonte; William, Fox; Masaaki, Yamada; Andrew, Alt; Aaron, Goodman
- Abstract:
- Digital data for figures used in Lower Hybrid Drift Waves During Guide Field Reconnection, Geophysical Research Letters, 47, e2020GL087192, 2020.
- Type:
- Dataset
- Issue Date:
- 29 October 2020
56. Microtearing Instabilities and Electron Thermal Transport in Low and High Collisionality NSTX Discharges
- Author(s):
- Rafiq T; Kaye S; Guttenfelder W; Weiland J; Schuster E; Anderson J; Luo L;
- Abstract:
- Microtearing mode (MTM) real frequency, growth rate, magnetic fluctuation amplitude and resulting electron thermal transport are studied in systematic NSTX scans of relevant plasma parameters. The dependency of the MTM real frequency and growth rate on plasma parameters, suitable for low and high collision NSTX discharges, is obtained by using the reduced MTM transport model [T. Rafiq, et al., Phys. Plasmas 23, 062507 (2016)]. The plasma parameter dependencies are compared and found to be consistent with the results obtained from MTM using the Gyrokinetic GYRO code. The scaling trend of collision frequency and plasma beta is found to be consistent with the global energy confinement trend observed in the NSTX experiment. The strength of the magnetic fluctuation is found to be consistent with the gyrokinetic estimate.In earlier studies, it was found that the version of the Multi-Mode (MM) anomalous transport model, which did not contain the effect of MTMs, provided an appropriate description of the electron temperature profiles in standard tokamak discharges and not in spherical tokamaks. When the MM model, which involves transport associated with MTMs, is incorporated in the TRANSP code and is used in the study of electron thermal transport in NSTX discharges, it is observed that the agreement with the experimental electron temperature profile is substantially improved.
- Type:
- Dataset
- Issue Date:
- February 2021
57. Multi-Fluid and Kinetic Models of Partially Ionized Magnetic Reconnection
- Author(s):
- Jara-Almonte, J.; Murphy, N.A.; Ji, H.
- Abstract:
- Magnetic reconnection in partially ionized plasmas is a ubiquitous and important phenomena in both laboratory and astrophysical systems. Here, simulations of partially ionized magnetic reconnection with well-matched initial conditions are performed using both multi-fluid and fully-kinetic approaches. Despite similar initial conditions, the time-dependent evolution differs between the two models. In multi-fluid models, the reconnection rate locally obeys either a decoupled Sweet-Parker scaling, where neutrals are unimportant, or a fully coupled Sweet-Parker scaling, where neutrals and ions are strongly coupled, depending on the resistivity. In contrast, kinetic models show a faster reconnection rate that is proportional to the fully-coupled, bulk Alfv\'en speed, $v_A^\star$. These differences are interpreted as the result of operating in different collisional regimes. Multi-fluid simulations are found to maintain $\nu_{ni}L/v_A^\star \gtrsim 1$, where $\nu_{ni}$ is the neutral-ion collision frequency and $L$ is the time-dependent current sheet half-length. This strongly couples neutrals to the reconnection outflow, while kinetic simulations evolve to allow $\nu_{ni}L/v_A^\star < 1$, decoupling neutrals from the reconnection outflow. Differences in the way reconnection is triggered may explain these discrepancies.
- Type:
- Dataset
- Issue Date:
- 2021
58. Novel 2D velocity estimation method for large transient events in plasmas
- Author(s):
- Mate, Lampert; Ahmed, Diallo; Stewart, Zweben
- Abstract:
- The dataset includes the data shown in the figures of the publication
- Type:
- Dataset
- Issue Date:
- 31 July 2021
59. Observation of synergy between lower hybrid waves at two frequencies in EAST
- Author(s):
- Choi, W.; Poli, F. M.; Li, M. H.; Baek, S. G.; Gorenlenkova, M.; Ding, B. J.; Gong, X. Z.; Chan, A.; Duan, Y. M.; Hu, J. H.; Lian, H.; Lin, S. Y.; Liu, H. Q.; Qian, J. P.; Wallace, G.; Wang, Y. M.; Zang, Q.; Zhao, H. L.
- Abstract:
- Synergistic effects between two frequencies of lower hybrid (LH) waves—operating at 2.45 and 4.6 GHz—were observed in experiment on EAST for the first time. At low density (n_e,lin ≈ 2.0 × 10^19m^−3), simultaneous injection of a 65/35 mix of 2.45 GHz/4.6 GHz power achieved an LHCD efficiency that was 25% higher than what should be expected from the linear combination of the two sources. The experiment was interpreted with time-dependent simulations, using the equilibrium and transport solver TRANSP, coupled with the ray-tracing code GENRAY and the Fokker-Planck solver CQL3D. For each discharge, profiles of current and hard x-ray from simulation and measurement agree within uncertainties. An examination of the electron distribution function indicates that the LH synergy is supported by the increased width of the LH resonance plateau in the simultaneous injection case compared to independent injection.
- Type:
- Dataset
- Issue Date:
- June 2021
60. Predicting Resistive Wall Mode Stability in NSTX through Balanced Random Forests and Counterfactual Explanations
- Author(s):
- Piccione, Andrea; Sabbagh, Steven; Andreopoulos, Yiannis
- Type:
- Dataset
- Issue Date:
- 2021
61. Prediction of electron density and pressure profile shapes on NSTX-U using neural networks
- Author(s):
- Boyer, Mark; Chadwick, Jason
- Abstract:
- A new model for prediction of electron density and pressure profile shapes on NSTX and NSTX-U has been developed using neural networks. The model has been trained and tested on measured profiles from experimental discharges during the first operational campaign of NSTX-U. By projecting profiles onto empirically derived basis functions, the model is able to efficiently and accurately reproduce profile shapes. In order to project the performance of the model to upcoming NSTX-U operations, a large database of profiles from the operation of NSTX is used to test performance as a function of available data. The rapid execution time of the model is well suited to the planned applications, including optimization during scenario development activities, and real-time plasma control. A potential application of the model to real-time profile estimation is demonstrated.
- Type:
- Dataset
- Issue Date:
- February 2021
62. Probe measurements of electric field and electron density fluctuations at megahertz frequencies using in-shaft miniature circuits
- Author(s):
- Yibo, Hu; Yoo, Jongsoo; Ji, Hantao; Goodman, Aaron; Wu, Xuemei
- Type:
- Dataset
- Issue Date:
- 16 March 2021
63. Prototype tests of the Electromagnetic Particle Injector-2 for Fast Time Response Disruption Mitigation in Tokamaks
- Author(s):
- Raman, Roger; Lunsford, Robert; Clauser, C.F.; Jardin, S.C; Menard, J.E.; Ono, M.
- Type:
- Dataset
- Issue Date:
- 2021
64. Stellarator coil design using cubic splines for improved access on the outboard side
- Author(s):
- Nicola, Lonigro; Zhu, Caoxiang
- Abstract:
- This is the data archive for the paper Lonigro & Zhu 2021 Nucl. Fusion https://doi.org/10.1088/1741-4326/ac2ff3. You can reproduce all the figures in the paper using the data and plotting scripts archived in this folder.
- Type:
- collection
- Issue Date:
- 20 October 2021
65. Synergy of Coupled Kink and Tearing Modes in Fast Ion Transport
- Author(s):
- Yang, J.; Podesta, M.; Fredrickson, E.
- Abstract:
- One aspect of the interaction between fast ions and magnetohydrodynamic (MHD) instabilities is the fast ion transport. Coupled kink and tearing MHD instabilities have also been reported to cause fast ion transport. Recently, the ''kick" model has been developed to compute the evolution of the fast ion distribution from the neutral beam injection using instabilities as phase space resonance sources. The goal of this paper is to utilize the kick model to understand the physics of fast ion transport caused by the coupled kink and tearing modes. Soft X-ray diagnostics are used to identify the mode parameters in NSTX. The comparison of neutron rates measured and computed from time-dependent TRANSP simulation with the kick model shows the coupling of kink and tearing mode is important in determination of the fast ion transport. The numerical scan of the mode parameters shows that the relative phase of the kink and tearing modes and the overlapping of kink and tearing mode resonances in the phase space can affect the fast ion transport, suggesting that the synergy of the coupled modes may be causing the fast ion transpor
- Type:
- Dataset
- Issue Date:
- February 2021
66. The updated ITPA global H-mode confinement database: description and analysis
- Author(s):
- Verdoolaege, G.; Kaye, S.M.; Angioni, C.; Kardaunn, O.W.J.F.; Maslov, M.; Romanelli, M.; Ryter, F.; Thomsen, K.
- Abstract:
- The multi-machine ITPA Global H-mode Confinement Database has been upgraded with new data from JET with the ITER-like wall and ASDEX Upgrade with the full tungsten wall. This paper describes the new database and presents results of regression analysis to estimate the global energy confinement scaling in H-mode plasmas using a standard power law. Various subsets of the database are considered, focusing on type of wall and divertor materials, confinement regime (all H-modes, ELMy H or ELM-free) and ITER-like constraints. Apart from ordinary least squares, two other, robust regression techniques are applied, which take into account uncertainty on all variables. Regression on data from individual devices shows that, generally, the confinement dependence on density and the power degradation are weakest in the fully metallic devices. Using the multi-machine scalings, predictions are made of the confinement time in a standard ELMy H-mode scenario in ITER. The uncertainty on the scaling parameters is discussed with a view to practically useful error bars on the parameters and predictions. One of the derived scalings for ELMy H-modes on an ITER-like subset is studied in particular and compared to the IPB98(y,2) confinement scaling in engineering and dimensionless form. Transformation of this new scaling from engineering variables to dimensionless quantities is shown to result in large error bars on the dimensionless scaling. Regression analysis in the space of dimensionless variables is therefore proposed as an alternative, yielding acceptable estimates for the dimensionless scaling. The new scaling, which is dimensionally correct within the uncertainties, suggests that some dependencies of confinement in the multi- machine database can be reconciled with parameter scans in individual devices. This includes vanishingly small dependence of confinement on line-averaged density and normalized plasma pressure (β), as well as a noticeable, positive dependence on effective atomic mass and plasma triangularity. Extrapolation of this scaling to ITER yields a somewhat lower confinement time compared to the IPB98(y, 2) prediction, possibly related to the considerably weaker dependence on major radius in the new scaling (slightly above linear). Further studies are needed to compare more flexible regression models with the power law used here. In addition, data from more devices concerning possible ‘hidden variables’ could help to determine their influence on confinement, while adding data in sparsely populated areas of the parameter space may contribute to further disentangling some of the global confinement dependencies in tokamak plasmas.
- Type:
- Dataset
- Issue Date:
- March 2021
67. Topological phases and bulk-edge correspondence of magnetized cold plasmas
- Author(s):
- Yichen, Fu; Hong, Qin
- Abstract:
- The figures and related data are used to describe the topological phase in cold magnetized plasma.
- Type:
- Image
- Issue Date:
- 2020
68. Type-I ELM mitigation by continuous lithium granule gravitational injection into the upper tungsten divertor in EAST
- Author(s):
- Sun, Zhen; Yuzhong, Qian; Maingi, Rajesh; Wang, Yifeng; Wang, Yumin; Nagy, Alex; Tritz, Kevin; Lunsford, Robert; Gilson, Erik; Zuo, Guizhong; Xu, Wei; Huang, Ming; Meng, Xiancai; Mansfield, Dennis K.; Zang, Qing; Zhu, Xiang; Lin, Xin; Liu, Haiqing; Duan, Yanmin; Zhang, Ling; Lyu, Bo; Liu, Yong; Wang, Liang; Bortolon, Ale; Xu, Guosheng; Gong, Xianzu; Hu, Jiansheng
- Abstract:
- Large edge-localized modes (ELMs) were mitigated by gravitational injection of lithium granules into the upper X-point region of the EAST device with tungsten plasma-facing components. The maximum ELM size was reduced by ~ 70% in high βN H-mode plasmas. Large ELM stabilization was sustained for up to about 40 energy confinement times, with constant core radiated power and no evidence of high-Z or low-Z impurity accumulation. The lithium granules injection reduced the edge plasma pedestal density and temperature and their gradients, due to increased edge radiation and reduced recycling from the plasma-facing components. Ideal stability calculations using the ELITE code indicate that the stabilization of large ELMs correlates with improved stability of intermediate-n peeling-ballooning modes, due to reduced edge current resulting from the profile changes. The pedestal pressure reduction was partially offset by a core density increase, which resulted in a modest ~ 7% drop in core stored energy and normalized energy confinement time. We surmise that the remnant small ELMs are triggered by the penetration of multiple Li granules just past the separatrix, similar to small ELMs triggered by deuterium pellet [S. Futatani et al., Nucl. Fusion 54 (2014) 073008]. This study extends previous ELM elimination with Li powder injection [R. Maingi et al., Nucl. Fusion 58 (2018) 024003] in EAST because 1) use of small, dust-like powder and the related potential health hazards were eliminated, and 2) use of macroscopic granules should be more applicable to future devices, due to deeper penetration than dust particles, e.g. inside the separatrix with velocities ~ 10 m/s in EAST.
- Type:
- Article
- Issue Date:
- April 2021
69. Wave-kinetic approach to zonal-flow dynamics: recent advances
- Author(s):
- Zhu, Hongxuan; Dodin, I. Y.
- Abstract:
- Basic physics of drift-wave turbulence and zonal flows has long been studied within the framework of wave-kinetic theory. Recently, this framework has been re-examined from first principles, which has led to more accurate yet still tractable "improved" wave-kinetic equations. In particular, these equations reveal an important effect of the zonal-flow "curvature" (the second radial derivative of the flow velocity) on dynamics and stability of drift waves and zonal flows. We overview these recent findings and present a consolidated high-level picture of (mostly quasilinear) zonal-flow physics within reduced models of drift-wave turbulence.
- Type:
- Dataset
- Issue Date:
- March 2021
70. Analytic stability boundaries for compressional and global Alfven eigenmodes driven by fast ions. I. Interaction via ordinary and anomalous cyclotron resonances.
- Author(s):
- Lestz J.B., Gorelenkov N.N., Belova E.V., Tang S.X., Crocker N.A.
- Abstract:
- Conditions for net fast ion drive are derived for beam-driven, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes, such as those routinely observed in spherical tokamaks such as NSTX(-U) and MAST. Both co- and counter-propagating CAEs and GAEs are investigated, driven by the ordinary and anomalous Doppler-shifted cyclotron resonance with fast ions. Whereas prior results were restricted to vanishingly narrow distributions in velocity space, broad parameter regimes are identified in this work which enable an analytic treatment for realistic fast ion distributions generated by neutral beam injection. The simple, approximate conditions derived in these regimes for beam distributions of realistic width compare well to the numerical evaluation of the full analytic expressions for fast ion drive. Moreover, previous results in the very narrow beam case are corrected and generalized to retain all terms in omega/omega_{ci} and k_{||}/kperp, which are often assumed to be small parameters but can significantly modify the conditions of drive and damping when they are non-negligible. Favorable agreement is demonstrated between the approximate stability criterion, simulation results, and a large database of NSTX observations of cntr-GAEs.
- Type:
- Dataset
- Issue Date:
- September 2019
71. Analytic stability boundaries for compressional and global Alfven eigenmodes driven by fast ions. II. Interaction via Landau resonance.
- Author(s):
- Lestz, J.B.; Gorelenkov, N.N.; Belova, E.V.; Tang, S.X.; Crocker, N.A.
- Abstract:
- Conditions for net fast ion drive are derived for beam-driven, co-propagating, sub-cyclotron compressional (CAE) and global (GAE) Alfven eigenmodes driven by the Landau resonance with super-Alfvenic fast ions. Approximations applicable to realistic neutral beam distributions and mode characteristics observed in spherical tokamaks enable the derivation of marginal stability conditions for these modes. Such conditions successfully reproduce the stability boundaries found from numerical integration of the exact expression for local fast ion drive/damping. Coupling between the CAE and GAE branches of the dispersion due to finite \omega/\omega_{ci} and k_\parallel/k_\perp is retained and found to be responsible for the existence of the GAE instability via this resonance. Encouraging agreement is demonstrated between the approximate stability criterion, simulation results, and a database of NSTX observations of co-CAEs.
- Type:
- Dataset
- Issue Date:
- January 2020
72. Deep convolutional neural networks for multi-scale time-series classification and application to disruption prediction in fusion devices
- Author(s):
- Churchill, R.M; the DIII-D team
- Abstract:
- The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
- Type:
- Dataset
- Issue Date:
- October 2019
73. Enhanced Pedestal H-mode at low edge ion collisionality on NSTX
- Author(s):
- Battaglia, D.J.; Guttenfelder, W.; Bell, R.E.; Diallo, A.; Ferraro, N.;, Fredrickson, E.; Gerhardt, S.P.; Kaye, S.M.; Maingi, R.; Smith, D.R.
- Abstract:
- The Enhanced Pedestal (EP) H-mode regime is an attractive wide-pedestal ELM-free high-betap scenario for NSTX-U and next-step devices as it achieves enhanced energy confinement (H98y,2 > 1.5), large normalized pressure (betaN > 5) and significant bootstrap fraction (f_BS > 0.6) at I_p/B_T = 2 MA/T. This regime is realized when the edge ion collisionality becomes sufficiently small that a positive feedback interaction occurs between a reduction in the ion neoclassical energy transport and an increase in the particle transport from pressure-driven edge instabilities. EP H-mode was most often observed as a transition following a large ELM in conditions with low edge neutral recycling. It is hypothesized that the onset of pressure-driven instabilities prior to the full recovery of the neutral density leads to a temporary period with elevated ion temperature gradient that triggers the transition to EP H-mode. Linear CGYRO and M3D-C1 calculations are compared to beam emission spectroscopy (BES) and magnetic spectroscopy in order to describe the evolution of the edge particle transport mechanisms during the ELM recovery and the saturated EP H-mode state. The observations are consistent with the hypothesis that the onset of pressure-driven edge instabilities, such as the KBM and kink-peeling, can be responsible for the increased particle transport in EP H-mode.
- Type:
- Dataset
- Issue Date:
- June 2020
74. First impurity powder injection experiments in LHD
- Author(s):
- Nespoli F., Ashikawa N., Gilson E.P., Lunsford R., Masuzaki S., Shoji M., Oishi T., Suzuki C., Nagy A., Mollen A., Pablant N.A., Ida K., Yoshinuma M., Tamura N., Gates D.A., Morisaki T., and the LHD experiment group
- Abstract:
- Injection of impurities in the form of sub-millimeter powder grains is performed for the first time in the Large Helical Device (LHD) plasma, employing the Impurity Powder Dropper (IPD) [A. Nagy et al., RSI 2018], developed and built by PPPL. Controlled amounts of boron (B) and boron nitride (BN) powder are injected into the helical plasma. Visible camera imaging, UV and charge exchange spectroscopy measurements show that the injected impurities effectively penetrate into the plasma in two different magnetic configurations.The prompt effects of the impurities on the plasma are characterized as the injection rate is scanned. The injected impurities provide a supplemental electron source, causing the plasma density to increase, together with the radiated power. Beneficial effects on the confined plasma temperature are observed at low plasma densities, due to an increased efficiency in NBI power absorption. For $n_{e,av}<10^{19}m^{-3}$ the powder grains penetrate deeper into the plasma, as they can be less effectively deflected by the plasma flow in the divertor leg, which they have to cross first as they are injected from the top of the machine.In this case, the created B ions are observed to move outwards from UV spectroscopy and charge exchange measurements, due to the outwards direction of the radial electric field. This makes low density plasmas a better candidate for powder boronization techniques.
- Type:
- Dataset
- Issue Date:
- November 2020
75. Geometric concepts for stellarator permanent magnet arrays
- Author(s):
- Hammond, K. C.; Zhu, C.; Brown, T.; Corrigan, K.; Gates, D. A.; Sibilia, M.
- Abstract:
- The development of stellarators that use permanent magnet arrays to shape their confining magnetic fields has been a topic of recent interest, but the requirements for how such magnets must be shaped, manufactured, and assembled remain to be determined. To address these open questions, we have performed a study of geometric concepts for magnet arrays with the aid of the newly developed MAGPIE code. A proposed experiment similar to the National Compact Stellarator Experiment (NCSX) is used as a test case. Two classes of magnet geometry are explored: curved bricks that conform to a regular grid in cylindrical coordinates, and hexahedra that conform to the toroidal plasma geometry. In addition, we test constraints on the magnet polarization. While magnet configurations constrained to be polarized normally to a toroidal surface around the plasma are unable to meet the required magnetic field parameters when subject to physical limitations on the strength of present-day magnets, configurations with unconstrained polarizations are shown to satisfy the physics requirements for a targeted plasma.
- Type:
- Dataset
- Issue Date:
- July 2020
76. Gyrokinetic understanding of the edge pedestal transport driven by resonant magnetic perturbations in a realistic divertor geometry
- Author(s):
- Hager, R.; Chang, C. S.; Ferraro, N. M.; Nazikian R.
- Abstract:
- Self-consistent simulations of neoclassical and electrostatic turbulent transport in a DIII-D H-mode edge plasma under resonant magnetic perturbations (RMPs) have been performed using the global total-f gyrokinetic particle-in-cell code XGC, in order to study density-pump out and electron heat confinement.The RMP field is imported from the extended magneto-hydrodynamics (MHD) code M3D-C1, taking into account the linear two-fluid plasma response.With both neoclassical and turbulence physics considered together, the XGC simulation reproduces two key features of experimentally observed edge transport under RMPs: increased radial particle transport in the pedestal region that is sufficient to account for the experimental pump-out rate, and suppression of the electron heat flux in the steepest part of the edge pedestal.In the simulation, the density fluctuation amplitude of modes moving in the electron diamagnetic direction increases due to interaction with RMPs in the pedestal shoulder and outward, while the electron temperature fluctuation amplitude decreases.
- Type:
- Dataset
- Issue Date:
- June 2020
77. MHD-blob correlations in NSTX
- Author(s):
- Zweben SJ; Fredrickson ED; Myra JR; Podesta M; Scotti F
- Abstract:
- This paper describes a study of the cross-correlations between edge fluctuations as seen in the gas puff imaging (GPI) diagnostic and low frequency coherent magnetic fluctuations (MHD) in H-mode plasmas in NSTX. The main new result was that large blobs in the SOL were significantly correlated with MHD activity the 3-6 kHz range in 21 of the 223 shots examined. There were also many other shots in which fluctuations in the GPI signal level and its peak radius Rpeak were correlated with MHD activity, but without any significant correlation of the MHD with large blobs. The structure and motion of the MHD is compared with that of the correlated blobs, and some possible theoretical mechanisms for the MHD-blob correlation are discussed.
- Type:
- Dataset
- Issue Date:
- May 2020
78. Machine Learning Characterization of Alfvénic and Sub-Alfvénic Chirping and Correlation With Fast-Ion Loss at NSTX
- Author(s):
- Woods, B. J. Q.; Duarte, V. N.; Fredrickson, E. D.; Gorelenkov, N. N.; Podestà, M.; Vann, R. G. L.
- Abstract:
- Abrupt large events in the Alfvenic and sub-Alfvenic frequency bands in tokamaks are typically correlated with increased fast-ion loss. Here, machine learning is used to speed up the laborious process of characterizing the behavior of magnetic perturbations from corresponding frequency spectrograms that are typically identified by humans. The analysis allows for comparison between different mode character (such as quiescent, fixed frequency, and chirping, avalanching) and plasma parameters obtained from the TRANSP code, such as the ratio of the neutral beam injection (NBI) velocity and the Alfven velocity (v_inj./v_A), the q-profile, and the ratio of the neutral beam beta and the total plasma beta (beta_beam,i / beta). In agreement with the previous work by Fredrickson et al., we find a correlation between beta_beam,i and mode character. In addition, previously unknown correlations are found between moments of the spectrograms and mode character. Character transition from quiescent to nonquiescent behavior for magnetic fluctuations in the 50200-kHz frequency band is observed along the boundary v_phi ~ (1/4)(v_inj. - 3v_A), where v_phi is the rotation velocity.
- Type:
- Dataset
- Issue Date:
- December 2019
79. Modeling of resistive plasma response in toroidal geometry using an asymptotic matching approach
- Author(s):
- Z. R. Wang; A. H. Glasser; D. Brennan; Y. Q. Liu; J-K. Park
- Abstract:
- The method of solving linear resistive plasma response, based on the asymptotic matching approach, is developed for full toroidal tokamaks by upgrading the Resistive DCON code [A.H. Glasser, Z.R. Wang and J.-K. Park, Physics of Plasmas, \textbf{23}, 112506 (2016)]. The derived matching matrix, asymptotically matching the outer and inner regions, indicates that the applied three dimension (3-D) magnetic perturbations contribute additional small solutions at each resonant surface due to the toroidal coupling of poloidal modes. In contrast, the resonant harmonic only affects the corresponding resonant surface in the cylindrical plasma. Since the solution of ideal outer region is critical to the asymptotic matching and is challenging to be solved in the toroidal geometry due to the singular power series solution at the resonant surfaces, systematic verification of the outer region $\Delta^\prime$ matrix is made by reproducing the well known analytical $\Delta^{\prime}$ result in [H.P. Furth, P.H. Rutherford and H. Selberg, The Physics of Fluids, \textbf{16}, 1054-1063 (1073)] as well as by making a quantitative benchmark with the PEST3 code [A. Pletzer and R.L. Dewar, J. Plasma Physics, \textbf{45}, 427-451 (1991)]. Finally, the reconstructed numerical solution of resistive plasma response from the toroidal matching matrix is presented. Comparing with the ideal plasma response, the global structure of the response can be affected by the small finite island at the resonant surfaces.
- Type:
- Dataset
- Issue Date:
- October 2020
80. Simulating pitch angle scattering using an explicitly solvable energy-conserving algorithm
- Author(s):
- Zhang, Xin; Fu, Yichen; Qin, Hong
- Abstract:
- Particle distribution functions evolving under the Lorentz operator can be simulated with the Langevin equation for pitch angle scattering. This approach is frequently used in particle based Monte-Carlo simulations of plasma collisions, among others. However, most numerical treatments do not guarantee energy conservation, which may lead to unphysical artifacts such as numerical heating and spectra distortions. We present a novel structure-preserving numerical algorithm for the Langevin equation for pitch angle scattering. Similar to the well-known Boris algorithm, the proposed numerical scheme takes advantage of the structure-preserving properties of the Cayley transform when calculating the velocity-space rotations. The resulting algorithm is explicitly solvable, while preserving the norm of velocities down to machine precision. We demonstrate that the method has the same order of numerical convergence as the traditional stochastic Euler-Maruyama method.
- Type:
- Dataset
- Issue Date:
- September 2020
81. Solitary zonal structures in subcritical drift waves: a minimum model
- Author(s):
- Yao Zhou; Hongxuan Zhu; I. Y. Dodin
- Abstract:
- {\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf610{\fonttbl\f0\fswiss\fcharset0 Helvetica;}{\colortbl;\red255\green255\blue255;\red0\green0\blue0;}{\*\expandedcolortbl;;\cssrgb\c0\c0\c0;}\margl1440\margr1440\vieww10800\viewh8400\viewkind0\pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0\f0\fs38 \cf2 Solitary zonal structures have recently been identified in gyrokinetic simulations of subcritical drift-wave (DW) turbulence with background shear flows. However, the nature of these structures has not been fully understood yet. Here, we show that similar structures can be obtained within a reduced model, which complements the modified Hasegawa\'97Mima equation with a generic primary instability and a background shear flow. We also find that these structures can be qualitatively reproduced in the modified Hasegawa\'97Wakatani equation, which subsumes the reduced model as a limit. In particular, we illustrate that in both cases, the solitary zonal structures approximately satisfy the same \'93equation of state\'94, which is a local relation connecting the DW envelope with the zonal-flow velocity. Due to this generality, our reduced model can be considered as a minimum model for solitary zonal structures in subcritical DWs. }
- Type:
- Dataset
- Issue Date:
- March 2020
82. Statistical properties of magnetic structures and energy dissipation during turbulent reconnection in the Earth's magnetotail
- Author(s):
- Bergstedt, K.; Ji, H.; Jara-Almonte, J.; Yoo, J.; Ergun, R. E.; Chen, L.-J.
- Abstract:
- We present the first statistical study of magnetic structures and associated energy dissipation observed during a single period of turbulent magnetic reconnection, by using the in situ measurements of the Magnetospheric Multiscale mission in the Earth's magnetotail on 26 July 2017. The structures are selected by identifying a bipolar signature in the magnetic field and categorized as plasmoids or current sheets via an automated algorithm which examines current density and plasma flow. The size of the plasmoids forms a decaying exponential distribution ranging from subelectron up to ion scales. The presence of substantial number of current sheets is consistent with a physical picture of dynamic production and merging of plasmoids during turbulent reconnection. The magnetic structures are locations of significant energy dissipation via electric field parallel to the local magnetic field, while dissipation via perpendicular electric field dominates outside of the structures. Significant energy also returns from particles to fields.
- Type:
- Dataset
- Issue Date:
- 14 September 2020
83. Theory of the tertiary instability and the Dimits shift from reduced drift-wave models
- Author(s):
- Zhu, Hongxuan; Zhou, Yao; Dodin, I. Y.
- Abstract:
- Tertiary modes in electrostatic drift-wave turbulence are localized near extrema of the zonal velocity $U(x)$ with respect to the radial coordinate $x$. We argue that these modes can be described as quantum harmonic oscillators with complex frequencies, so their spectrum can be readily calculated. The corresponding growth rate $\gamma_{\rm TI}$ is derived within the modified Hasegawa--Wakatani model. We show that $\gamma_{\rm TI}$ equals the primary-instability growth rate plus a term that depends on the local $U''$; hence, the instability threshold is shifted compared to that in homogeneous turbulence. This provides a generic explanation of the well-known yet elusive Dimits shift, which we find explicitly in the Terry--Horton limit. Linearly unstable tertiary modes either saturate due to the evolution of the zonal density or generate radially propagating structures when the shear $|U'|$ is sufficiently weakened by viscosity. The Dimits regime ends when such structures are generated continuously.
- Type:
- Dataset
- Issue Date:
- January 2020
84. Theory of the tertiary instability and the Dimits shift within a scalar model
- Author(s):
- Zhu, Hongxuan; Zhou Yao; Dodin, I.Y.
- Abstract:
- The Dimits shift is the shift between the threshold of the drift-wave primary instability and the actual onset of turbulent transport in magnetized plasma. It is generally attributed to the suppression of turbulence by zonal flows, but developing a more detailed understanding calls for consideration of specific reduced models. The modified Terry--Horton system has been proposed by St-Onge [J. Plasma Phys. {\bf 83}, 905830504 (2017)] as a minimal model capturing the Dimits shift. Here, we use this model to develop an analytic theory of the Dimits shift and a related theory of the tertiary instability of zonal flows. We show that tertiary modes are localized near extrema of the zonal velocity $U(x)$, where $x$ is the radial coordinate. By approximating $U(x)$ with a parabola, we derive the tertiary-instability growth rate using two different methods and show that the tertiary instability is essentially the primary drift-wave instability modified by the local $U''$. Then, depending on $U''$, the tertiary instability can be suppressed or unleashed. The former corresponds to the case when zonal flows are strong enough to suppress turbulence (Dimits regime), while the latter corresponds to the case when zonal flows are unstable and turbulence develops. This understanding is different from the traditional paradigm that turbulence is controlled by the flow shear $U'$. Our analytic predictions are in agreement with direct numerical simulations of the modified Terry--Horton system.
- Type:
- Dataset
- Issue Date:
- June 2020
85. Toward fusion plasma scenario planning for NSTX-U using machine-learning-accelerated models
- Author(s):
- Mark D. Boyer
- Abstract:
- One of the most promising devices for realizing power production through nuclear fusion is the tokamak. To maximize performance, it is preferable that tokamak reactors achieve advanced operating scenarios characterized by good plasma confinement, improved magnetohydrodynamic (MHD) stability, and a largely non-inductively driven plasma current. Such scenarios could enable steady-state reactor operation with high \emph{fusion gain} --- the ratio of produced fusion power to the external power provided through the plasma boundary. Precise and robust control of the evolution of the plasma boundary shape as well as the spatial distribution of the plasma current, density, temperature, and rotation will be essential to achieving and maintaining such scenarios. The complexity of the evolution of tokamak plasmas, arising due to nonlinearities and coupling between various parameters, motivates the use of model-based control algorithms that can account for the system dynamics. In this work, a learning-based accelerated model trained on data from the National Spherical Torus Experiment Upgrade (NSTX-U) is employed to develop planning and control strategies for regulating the density and temperature profile evolution around desired trajectories. The proposed model combines empirical scaling laws developed across multiple devices with neural networks trained on empirical data from NSTX-U and a database of first-principles-based computationally intensive simulations. The reduced execution time of the accelerated model will enable practical application of optimization algorithms and reinforcement learning approaches for scenario planning and control development. An initial demonstration of applying optimization approaches to the learning-based model is presented, including a strategy for mitigating the effect of leaving the finite validity range of the accelerated model. The approach shows promise for actuator planning between experiments and in real-time.
- Type:
- Dataset
- Issue Date:
- May 2020
86. Vertical forces during VDEs in an ITER plasma and the role of halo currents
- Author(s):
- Clasuer, C; Jardin, S; Ferraro, N
- Abstract:
- Vertical displacement events (VDEs) can occur in elongated tokamaks causing large currents to flow in the vessel and other adjacent metallic structures. To better understand the potential magnitude of the associated forces and the role of the so called ``halo currents'' on them, we have used the M3D-C1 code to simulate potential VDEs in ITER. We used actual values for the vessel resistivity and pre-quench temperatures and, unlike most of the previous studies, the halo region is naturally formed by triggering the thermal quench with an increase in the plasma thermal conductivity. We used the 2D non-linear version of the code and vary the post-thermal quench thermal conductivity profile as well as the boundary temperature in order to generate a wide range of possible cases that could occur in the experiment. We also show that, for a similar condition, increasing the halo current does not increase the total force on the wall since it is offset by a decrease in the toroidal contribution.
- Type:
- Dataset
- Issue Date:
- February 2020
87. A scalable real-time framework for Thomson scattering analysis: Application to NSTX-U
- Author(s):
- F. M. Laggner, A. Diallo, B. P. LeBlanc, R. Rozenblat, G. Tchilinguirian, E.Kolemen, the NSTX-U team
- Abstract:
- A detailed description of a prototype setup for real-time (rt) Thomson scattering (TS) analysis is presented and implemented in the multi-point Thomson scattering (MPTS) diagnostic system at the National Spherical Torus Experiment Upgrade(NSTX-U). The data acquisition hardware was upgraded with rt capable electronics (rt-analog digital converters (ADCs) and a rt server) that allow for fast digitization of the laser pulse signal of eight radial MPTS channels. In addition, a new TS spectrum analysis software for a rapid calculation of electron temperature (Te) and electron density (ne) was developed. Testing of the rt hardware and data analysis soft-ware was successfully completed and benchmarked against the standard, post-shot evaluation. Timing tests were performed showing that the end-to-end processing time was reproducibly below 17 ms for the duration of at least 5 s, meeting a 60 Hz deadline by the laser pulse repetition rate over the length of a NSTX-U discharge. The presented rt framework is designed to be scalable in system size, i.e. incorporation of additional radial channels by solely adding additional rt capable hardware. Furthermore, it is scalable in its operation duration and was continuously run for up to 30 min, making it an attractive solution for machines with long discharge duration such as advanced, non-inductive tokamaks or stellarators.
- Type:
- Dataset
- Issue Date:
- March 2019
88. Application of transient CHI plasma startup to future ST and AT devices
- Author(s):
- Hammond, K.C.; Raman, R.; Jardin, S.C.
- Abstract:
- Employment of non-inductive plasma start-up techniques would considerably simplify the design of a spherical tokamak fusion reactor. Transient coaxial helicity injection (CHI) is a promising method, expected to scale favorably to next-step reactors. However, the implications of reactor-relevant parameters on the initial breakdown phase for CHI have not yet been considered. Here, we evaluate CHI breakdown in reactor-like configurations using an extension of the Townsend avalanche theory. We find that a CHI electrode concept in which the outer vessel wall is biased to achieve breakdown, while previously successful on NSTX and HIT-II, may exhibit a severe weakness when scaled up to a reactor. On the other hand, concepts which employ localized biasing electrodes such as those used in QUEST would avoid this issue. Assuming that breakdown can be successfully attained, we then apply scaling relationships to predict plasma parameters attainable in the transient CHI discharge. Assuming the use of 1 Wb of injector flux, we find that plasma currents of 1 MA should be achievable. Furthermore, these plasmas are expected to Ohmically self-heat with more than 1 MW of power as they decay, facilitating efficient hand-off to steady-state heating sources. These optimistic scalings are supported by TSC simulations.
- Type:
- Dataset
- Issue Date:
- February 2019
89. Blob wakes in NSTX
- Author(s):
- Zweben SJ, Myra JR, Diallo A, Russell DA, Scotti F, Stotler DP
- Abstract:
- Transient small-scale structures were identified in the wake of blobs movingpoloidally through the SOL of high-powered H-mode plasmas in NSTX, using the gaspuff imaging (GPI) diagnostic. These blob wakes had a poloidal wavelength in therange 3.5 cm, which is significantly smaller than the average blob scale of~12 cm, and the wakes had a poloidal velocity of 1.5 km/sec in theelectron diamagnetic direction, which is opposite to the blob poloidal velocity inthese shots. These wakes were radially localized 0-4 cm outside the separatrix andoccurred within ~50 microsec after the passage of a blob through the GPI field of view.The clearest wakes were seen when the GPI viewing angle was well aligned with thelocal B field line, as expected for such small-scale structures given the diagnosticgeometry. A plausible theoretical interpretation of the wakes is discussed: theobserved wakes share some features of drift waves and/or drift-Alfven waves whichcould be excited
- Type:
- Dataset
- Issue Date:
- July 2019
90. Comment on ‘Numerical modeling of tokamak breakdown phase driven by pure Ohmic heating under ideal conditions’
- Author(s):
- Yoo, Min-Gu; Na, Yong-Su
- Abstract:
- In this comment, we point out possible critical numerical flaws of recent particle simulation studies (Jiang et al 2016 Nucl. Fusion 56 126017, Peng et al 2018 Nucl. Fusion 58 026007) on the electrical gas breakdown in a simple one-dimensional periodic slab geometry. We show that their observations on the effects of the ambipolar electric fields during the breakdown, such as the sudden reversal of the ion flow direction, could not be real physical phenomena but resulting from numerical artifacts violating the momentum conservation law. We show that an incomplete implementation of the direct-implicit scheme can cause the artificial electric fields and plasma transports resulting in fallacies in simulation results. We also discuss that their simple plasma model without considering poloidal magnetic fields seriously mislead the physical mechanism of the electrical gas breakdown because it cannot reflect important dominant plasma dynamics in the poloidal plane (Yoo et al 2018 Nat. Commun. 9 3523).
- Type:
- Dataset
- Issue Date:
- June 2019
91. Design and simulation of the snowflake divertor control for NSTX-U
- Author(s):
- Vail, P. J.; Boyer, M. D.; Welander, A. S.; Kolemen, E.; U.S. Department of Energy contract number DE-AC02-09CH11466
- Abstract:
- This paper presents the development of a physics-based multiple-input-multiple-output algorithm for real-time feedback control of snowflake divertor (SFD) configurations on the National Spherical Torus eXperiment Upgrade (NSTX-U). A model of the SFD configuration response to applied voltages on the divertor control coils is first derived and then used, in conjunction with multivariable control synthesis techniques, to design an optimal state feedback controller for the configuration. To demonstrate the capabilities of the controller, a nonlinear simulator for axisymmetric shape control was developed for NSTX-U which simultaneously evolves the currents in poloidal field coils based upon a set of feedback-computed voltage commands, calculates the induced currents in passive conducting structures, and updates the plasma equilibrium by solving the free-boundary Grad-Shafranov problem. Closed-loop simulations demonstrate that the algorithm enables controlled operations in a variety of SFD configurations and provides capabilities for accurate tracking of time-dependent target trajectories for the divertor geometry. In particular, simulation results suggest that a time-varying controller which can properly account for the evolving SFD dynamical response is not only desirable but necessary for achieving acceptable control performance. The algorithm presented in this paper has been implemented in the NSTX-U Plasma Control System in preparation for future control and divertor physics experiments.
- Type:
- Dataset
- Issue Date:
- April 2019
92. Electron inertial effects on linearly polarized electromagnetic ion cyclotron waves at Earth's magnetosphere
- Author(s):
- Kim, Eun-Hwa; Johnson, Jay; Lee, Dong-Hun
- Abstract:
- We discuss a role of the electron inertial effect on linearly polarized electromagnetic ion cyclotron (EMIC) waves at Earth. The linearly polarized EMIC waves have been previously suggested to be generated via mode conversion from the fast compressional wave at the ion-ion hybrid (IIH) resonance. When the electron inertial effects are neglected, the wave normal angle of the mode-converted IIH waves is 90 degrees because the wavevector perpendicular to the magnetic field becomes infinite at the IIH resonance. When the electron inertial effect is considered, the mode-converted IIH waves can propagate across the magnetic field lines and the wavelength perpendicular to the magnetic field approaches the electron inertial length scale near the Buchsbaum resonance. These waves are referred to as electron inertial waves. Due to the electron inertial effect, the perpendicular wavenumber to the ambient magnetic field near the IIH resonance remains finite and the wave normal angle is less than 90 degrees. The wave normal angle where the maximum absorption occurs in a dipole magnetic field is 30-80 degrees, which is consistent with the observed values near the magnetic equator. Therefore, the numerical results suggest that the linearly polarized EMIC wave generated via mode conversion near the IIH resonance can be detected in between the Buchsbaum and the IIH resonance frequencies, and these waves can have normal angle less than 90 degrees.
- Type:
- Dataset
- Issue Date:
- April 2019
93. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples2
- Author(s):
- C.H. Skinner, C.P. Chrobak, R. Kaita, B.E.Koel
- Abstract:
- Abstract: Tokamak plasma facing components have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration, erosion lifetime, dust and tritium accumulation, and plasma contamination. However high spatial resolution measurements of deposition on the scale of the surface roughness have been lacking to date. We will present elemental images of graphite samples from NSTX-U and DIII-D DiMES experiments performed with a Scanning Auger Microprobe at sub-micron resolution that show strong microscopic variations in deposition and correlate this with 3D topographical maps of surface irregularities. The NSTX-U samples were boronized and exposed to deuterium plasmas and the DiMES samples had localized Al and W films and were exposed to dedicated helium plasmas. Topographical maps of the samples were performed with a 3D confocal optical microscope and compared to the elemental deposition pattern. The results revealed localized deposition concentrated in areas shadowed from the ion flux, incident in a direction calculated (for the DiMES case) by taking account of the magnetic pre-sheath.
- Type:
- Dataset
- Issue Date:
- April 2019
94. Formation of solitary zonal structures via the modulational instability of drift waves
- Author(s):
- Zhou, Yao; Zhu, Hongxuan; Dodin, I. Y.
- Abstract:
- {\rtf1\ansi\ansicpg1252\cocoartf1561\cocoasubrtf600 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;\red0\green0\blue0;} {\*\expandedcolortbl;;\cssrgb\c0\c0\c0;} \margl1440\margr1440\vieww10800\viewh8400\viewkind0 \pard\tx887\tx1775\tx2662\tx3550\tx4438\tx5325\tx6213\tx7101\tx7988\tx8876\tx9764\tx10651\tx11539\tx12427\tx13314\tx14202\tx15090\tx15977\tx16865\tx17753\tx18640\tx19528\tx20416\tx21303\tx22191\tx23079\tx23966\tx24854\tx25742\tx26629\tx27517\tx28405\tx29292\tx30180\tx31067\tx31955\tx32843\tx33730\tx34618\tx35506\tx36393\tx37281\tx38169\tx39056\tx39944\tx40832\tx41719\tx42607\tx43495\tx44382\tx45270\tx46158\tx47045\tx47933\tx48821\tx49708\tx50596\tx51484\tx52371\tx53259\tx54147\tx55034\tx55922\tx56810\tx57697\tx58585\tx59472\tx60360\tx61248\tx62135\tx63023\tx63911\tx64798\tx65686\tx66574\tx67461\tx68349\tx69237\tx70124\tx71012\tx71900\tx72787\tx73675\tx74563\tx75450\tx76338\tx77226\tx78113\tx79001\tx79889\tx80776\tx81664\tx82552\tx83439\tx84327\tx85215\tx86102\tx86990\tx87877\tx88765\slleading20\pardirnatural\partightenfactor0 \f0\fs38 \cf2 The dynamics of the radial envelope of a weak coherent drift wave is approximately governed by a nonlinear Schr\'f6dinger equation, which emerges as a limit of the modified Hasegawa\'97Mima equation. The nonlinear Schr\'f6dinger equation has well-known soliton solutions, and its modulational instability can naturally generate solitary structures. In this paper, we demonstrate that this simple model can adequately describe the formation of solitary zonal structures in the modified Hasegawa\'97Mima equation, but only when the amplitude of the coherent drift wave is relatively small. At larger amplitudes, the modulational instability produces stationary zonal structures instead. Furthermore, we find that incoherent drift waves with beam-like spectra can also be modulationally unstable to the formation of solitary or stationary zonal structures, depending on the beam intensity. Notably, we show that these drift waves can be modeled as quantumlike particles (\'93driftons\'94) within a recently developed phase-space (Wigner\'97Moyal) formulation, which intuitively depicts the solitary zonal structures as quasi-monochromatic drifton condensates. Quantumlike effects, such as diffraction, are essential to these condensates; hence, the latter cannot be described by wave-kinetic models that are based on the ray approximation.\ }
- Type:
- Dataset
- Issue Date:
- June 2019
95. Global modeling of wall material migration following boronization in NSTX-U
- Author(s):
- Nichols, J.H.; Jaworski, M.A.; Skinner, C.H.; Bedoya, F.; Scotti, F.; Soukhanovskii, V.A.; Schmid, K.
- Abstract:
- Boronization is commonly utilized in tokamaks to suppress intrinsic impurities, most notably oxygen from residual water vapor. However, this is a temporary solution, as oxygen levels typically return to pre-boronization levels following repeated plasma exposure. The global impurity migration model WallDYN has been applied to the post-boronization surface impurity evolution in NSTX-U. A “Thin Film Model” has been incorporated into WallDYN to handle spatially inhomogeneous conditioning films of varying thicknesses, together with an empirical boron conditioning model for the NSTX-U glow discharge boronization process. The model qualitatively reproduces the spatial distribution of boron in the NSTX-U vessel, the spatially-resolved divertor emission pattern, and the increase in oxygen levels following boronization. The simulations suggest that oxygen is primarily sourced from wall locations without heavy plasma flux or significant boron deposition, namely the lower and upper passive plates and the lower private flux zone.
- Type:
- Dataset
- Issue Date:
- March 2019
96. Initial transport and turbulence analysis and gyrokinetic simulation validation in NSTX-U L-mode plasmas
- Author(s):
- Guttenfelder, W.; Kaye, S.M.; Kreite, D.M.; Bell, R.E.; Diallo, A.; LeBlanc, B.P.; McKee, G.R.; Podesta, M.; Sabbagh, S.A.; Smith, D.R.
- Abstract:
- Transport analysis, ion-scale turbulence measurements, and initial linear and nonlinear gyrokinetic simulations are reported for a transport validation study based on low aspect ratio NSTX-U L-mode discharges. The relatively long, stationary L-modes enabled by the upgraded centerstack provide a more ideal target for transport validation studies that were not available during NSTX operation. Transport analysis shows that anomalous electron transport dominates energy loss while ion thermal transport is well described by neoclassical theory. Linear gyrokinetic GYRO analysis predicts that ion temperature gradient (ITG) modes are unstable around normalized radii $\rho$=0.6-0.8, although $E\timesB$ shearing rates are larger than the linear growth rates over much of that region. Deeper in the core ($\rho$=0.4-0.6), electromagnetic microtearing modes (MTM) are unstable as a consequence of the relatively high beta and collisionality in these particular discharges. Consistent with the linear analysis, local, nonlinear ion-scale GYRO simulations predict strong ITG transport at $\rho$=0.76, whereas electromagnetic MTM transport is important at $\rho$=0.47. The prediction of ion-scale turbulence is consistent with 2D beam emission spectroscopy (BES) that measures the presence of broadband ion-scale fluctuations. Interestingly, the BES measurements also indicate the presence of bi-modal poloidal phase velocity propagation that could be indicative of two different turbulence types. However, in the region between ($\rho$=0.56, 0.66), ion-scale simulations are strongly suppressed by the locally large $E\timesB$ shear. Instead, electron temperature gradient (ETG) turbulence simulations predict substantial transport, illustrating electron-scale contributions can be important in low aspect ratio L-modes, similar to recent analysis at conventional aspect ratio. However, agreement within experimental uncertainties has not been demonstrated, which requires additional simulations to test parametric sensitivities. The potential need to include profile-variation effects (due to the relatively large value of $\rho_*$=$\rho_i$/a at low aspect ratio), including electromagnetic and possibly multi-scale effects, is also discussed.
- Type:
- Dataset
- Issue Date:
- March 2019
97. Intrinsic Rotation in Axisymmetric Devices
- Author(s):
- T Stoltzfus-Dueck
- Abstract:
- Toroidal rotation is critical for fusion in tokamaks, since it stabilizes instabilities that can otherwise cause disruptions or degrade confinement. Unlike present-day devices, ITER might not have enough neutral-beam torque to easily avoid these instabilities. We must therefore understand how the plasma rotates intrinsically, that is, without applied torque. Experimentally, torque-free plasmas indeed rotate, with profiles that are often non-flat and even non-monotonic. The rotation depends on many plasma parameters including collisionality and plasma current, and exhibits sudden bifurcations (rotation reversals) at critical parameter values.Since toroidal angular momentum is conserved in axisymmetric systems, and since experimentally inferred momentum transport is much too large to be neoclassical, theoretical work has focused on rotation drive by nondiffusive turbulent momentum fluxes. In the edge, intrinsic rotation relaxes to a steady state in which the total momentum outflux from the plasma vanishes. Ion drift orbits, scrape-off-layer flows, separatrix geometry, and turbulence intensity gradient all play a role. In the core, nondiffusive and viscous momentum fluxes balance to set the rotation gradient at each flux surface. Although many mechanisms have been proposed for the nondiffusive fluxes, most are treated in one of two distinct but related gyrokinetic formulations. In a radially local fluxtube, appropriate for rho star <<1, the lowest-order gyrokinetic formulations exhibit a symmetry that prohibits nondiffusive momentum flux for nonrotating plasmas in an up- down symmetric magnetic geometry with no ExB shear. Many symmetry-breaking mechanisms have been identified, but none have yet been conclusively demonstrated to drive a strong enough flux to explain commonly observed experimental rotation profiles. Radially global gyrokinetic simulations naturally include many symmetry-breaking mechanisms, and have shown cases with experimentally relevant levels of nondiffusive flux. These promising early results motivate further work to analyze, verify, and validate.This article provides a pedagogical introduction to intrinsic rotation in axisymmetric devices. Intended for both newcomers to the topic and experienced practitioners, the article reviews a broad range of topics including experimental and theoretical results for both edge and core rotation, while maintaining a focus on the underlying concepts.
- Type:
- Dataset
- Issue Date:
- November 2019
98. Machine Learning Characterization of Alfvénic and Sub-Alfvénic Chirping and Correlation With Fast-Ion Loss at NSTX
- Author(s):
- Woods, B. J. Q.; Duarte, V. N.; Fredrickson, E. D.; Gorelenkov, N. N.; Podestà, M.; Vann, R. G. L.
- Abstract:
- Abrupt large events in the Alfvenic and sub-Alfvenic frequency bands in tokamaks are typically correlated with increased fast-ion loss. Here, machine learning is used to speed up the laborious process of characterizing the behavior of magnetic perturbations from corresponding frequency spectrograms that are typically identified by humans. The analysis allows for comparison between different mode character (such as quiescent, fixed frequency, and chirping, avalanching) and plasma parameters obtained from the TRANSP code, such as the ratio of the neutral beam injection (NBI) velocity and the Alfven velocity (v_inj./v_A), the q-profile, and the ratio of the neutral beam beta and the total plasma beta (beta_beam,i / beta). In agreement with the previous work by Fredrickson et al., we find a correlation between beta_beam,i and mode character. In addition, previously unknown correlations are found between moments of the spectrograms and mode character. Character transition from quiescent to nonquiescent behavior for magnetic fluctuations in the 50200-kHz frequency band is observed along the boundary v_phi ~ (1/4)(v_inj. - 3v_A), where v_phi is the rotation velocity.
- Type:
- Dataset
- Issue Date:
- December 2019
99. Modelling of Ablatant Deposition from Electromagnetically Driven Radiative Pellets for Disruption Mitigation Studies
- Author(s):
- Lunsford, Robert; Raman, Roger; Brooks, Arthur; Ellis, Robert A.; Lay, W-S;
- Abstract:
- The Electromagnetic Particle Injector (EPI) concept is advanced through the simulation of ablatant deposition into ITER H-mode discharges with calculations showing penetration past the H-mode pedestal for a range of injection velocities and granule sizes concurrent with the requirements of disruption mitigation. As discharge stored energy increases in future fusion devices such as ITER, control and handling of disruption events becomes a critical issue. An unmitigated disruption could lead to failure of the plasma facing components resulting in financially and politically costly repairs. Methods to facilitate the quench of an unstable high current discharge are required. With the onset warning time for some ITER disruption events estimated to be less than 10 ms, a disruption mitigation system needs to be considered which operates at injection speeds greater than gaseous sound speeds. Such an actuator could then serve as a means to augment presently planned pneumatic injection systems. The EPI uses a rail gun concept whereby a radiative payload is delivered into the discharge by means of the JxB forces generated by an external current pulse, allowing for injection velocities in excess of 1 km/s. The present status of the EPI project is outlined, including the addition of boost magnetic coils. These coils augment the self-generated rail gun magnetic field and thus provide a more efficient acceleration of the payload. The coils and the holder designed to constrain them have been modelled with the ANSYS code to ensure structural integrity through the range of operational coil cu
- Type:
- Dataset
- Issue Date:
- June 2019
100. Nonlinear saturation and oscillations of collisionless zonal flows
- Author(s):
- Zhu, Hongxuan; Zhou, Yao; Dodin, I. Y.
- Abstract:
- In homogeneous drift-wave (DW) turbulence, zonal flows (ZFs) can be generated via a modulational instability (MI) that either saturates monotonically or leads to oscillations of the ZF energy at the nonlinear stage. This dynamics is often attributed as the predator-prey oscillations induced by ZF collisional damping; however, similar dynamics is also observed in collisionless ZFs, in which case a different mechanism must be involved. Here, we propose a semi-analytic theory that explains the transition between the oscillations and saturation of collisionless ZFs within the quasilinear Hasegawa-Mima model. By analyzing phase-space trajectories of DW quanta (driftons) within the geometrical-optics (GO) approximation, we argue that the parameter that controls this transition is N ~ \gamma_MI/\omega_DW, where \gamma_MI is the MI growth rate and \omega_DW is the linear DW frequency. We argue that at N << 1, ZFs oscillate due to the presence of so-called passing drifton trajectories, and we derive an approximate formula for the ZF amplitude as a function of time in this regime. We also show that at N >~ 1, the passing trajectories vanish and ZFs saturate monotonically, which can be attributed to phase mixing of higher-order sidebands. A modification of N that accounts for effects beyond the GO limit is also proposed. These analytic results are tested against both quasilinear and fully-nonlinear simulations. They also explain the earlier numerical results by Connaughton et al. [J. Fluid Mech. 654, 207 (2010)] and Gallagher et al. [Phys. Plasmas 19, 122115 (2012)] and offer a revised perspective on what the control parameter is that determines the transition from the oscillations to saturation of collisionless ZFs.
- Type:
- Dataset
- Issue Date:
- May 2019
- « Previous
- Next »
- 1
- 2
- 3