There has been considerable recent interest in the high-pressure behavior of silicon carbide, a potential major constituent of carbon-rich exoplanets. In this work, the atomic-level structure of SiC was determined through in situ X-ray diffraction under laser-driven ramp compression up to 1.5 TPa; stresses more than seven times greater than previous static and shock data. Here we show that the B1-type structure persists over this stress range and we have constrained its equation of state (EOS). Using this data we have determined the first experimentally based mass-radius curves for a hypothetical pure SiC planet. Interior structure models are constructed for planets consisting of a SiC-rich mantle and iron-rich core. Carbide planets are found to be ~10% less dense than corresponding terrestrial planets.
Geyman, Emily C.; Wu, Ziman; Nadeau, Matthew D.; Edmonsond, Stacey; Turner, Andrew; Purkis, Sam J.; Howes, Bolton; Dyer, Blake; Ahm, Anne-Sofie C.; Yao, Nan; Deutsch, Curtis A.; Higgins, John A.; Stolper, Daniel A.; Maloof, Adam C.
Abstract:
Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. In this contribution, we present new geochemical data that bear on this problem, including stable isotope and minor and trace element data from carbonate sources in the modern Bahamas such as ooids, corals, foraminifera, and green algae.
This dataset contains input and output files to reproduce the results of the manuscript "Homogeneous ice nucleation in an ab initio machine learning model" by Pablo M. Piaggi, Jack Weis, Athanassios Z. Panagiotopoulos, Pablo G. Debenedetti, and Roberto Car (arXiv preprint https://arxiv.org/abs/2203.01376). In this work, we studied the homogeneous nucleation of ice from supercooled liquid water using a machine learning model trained on ab initio energies and forces. Since nucleation takes place over times much longer than the simulation times that can be afforded using molecular dynamics simulations, we make use of the seeding technique that is based on simulating an ice cluster embedded in liquid water. The key quantity provided by the seeding technique is the size of the critical cluster (i.e., a size such that the cluster has equal probabilities of growing or shrinking at the given supersaturation). Using data from the seeding simulations and the equations of classical nucleation theory we compute nucleation rates that can be compared with experiments.
This dataset contains all data relevant to a forthcoming publication in which we used molecular simulation methods to study the phase behavior of supercooled water. The dataset contains simulation input and output files, processed data files, and image files used to create all plots in the manuscript. Python analysis scripts are also included, including instructions for how to re-generate all plots in the manuscript.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
This distribution contains experimentally measured data for the extent of retained enzyme activity post thermal stressing for three distinct enzymes: glucose oxidase, lipase, and horseradish peroxidase. The data is used to form conclusions and develop machine learning models as reported in the publication "Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids" by Matthew Tamasi, Roshan Patel, Carlos Borca, Shashank Kosuri, Heloise Mugnier, Rahul Upadhya, N. Sanjeeva Murthy, Michael Webb*, and Adam Gormley. Details regarding the experimental protocols are reported in the aforementioned paper but are briefly discussed in the README.
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Data set for "Ocean emission of microplastic by bursting bubble jet drops." Two .csv files are provided: one for the size of a jet drop carrying microplastic, and another for the amount of microplastic captured by a jet drop.