Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Martin, James K; Sheehan, Joseph P; Bratton, Benjamin P; Moore, Gabriel M; Mateus, André; Li, Sophia Hsin-Jung; Kim, Hahn; Rabinowitz, Joshua D; Typas, Athanasios; Savitski, Mikhail M; Wilson, Maxwell Z; Gitai, Zemer
Abstract:
The rise of antibiotic resistance and declining discovery of new antibiotics have created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably-low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing MRSA persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrheae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.
China is the world's largest carbon emitter and suffers from severe air pollution. About one million deaths in China were attributable to air pollution in 2017. Alternative energy vehicles (AEVs), e.g. electric, hydrogen fuel cell, and natural gas vehicles, can help achieve both carbon emission mitigation and air quality improvement. However, climate, air quality and health co-benefit of AEVs powered by deeply decarbonized electricity generation remain poorly quantified. Here, we conduct a quantitative integrated assessment of the air quality, health, carbon emission mitigation and economic benefits of AEV deployment as the electricity grid decarbonizes in China. We find population-weighted annual PM2.5 and summer O3 concentration can decrease as large as 5.7μgm−3 and 4.9ppb. Annual avoided premature mortalities and years of life lost resulting from improved ambient air pollution can be as large as ~329,000 persons and ~1,611,000 years. We thus show that maximizing climate, air quality and health benefits of AEV deployment in China requires rapid decarbonization of the power system.
Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
Abstract:
Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
Abstract:
A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
The dataset is a compilation of real time ground observations of criteria pollutants monitored at the Central Pollution Control Board (CPCB) continuous stations in India, from 2015-2019. Pollutants included are PM2.5, PM10, SO2, NO2 and O3 and are archived at every hour for all stations across India.