Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments (pre-processed), previously published observation-based datasets, and code to reproduce figures from these datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
Microscopy images are part of a paper entitled "Structured foraging of soil predators unveils functional responses to bacterial defenses" by Fernando Rossine, Gabriel Vercelli, Corina Tarnita, and Thomas Gregor. For detailed acquisition methods see the paper. Experiments were performed between 2019 and 2020 at Princeton University. Two types of images are provided, macroscopic and microscopic widefiled Images. Macroscopic images all show Petri dishes covered in fluorescent bacteria being consumed by amoebae. Images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum. Images used for the creation of a profile were all taken within 30 minutes of each other. Within each directory numbered images are independent replicates. The raw video directory contains time series for dishes under drug treatments. Each numbered folder is a sequence of photos (taken 30 minutes apart of each other) of a single dish. Microscopic images all show amoebae consuming bacteria on a petri dish. The 45 minute videos show either edge cells (located at the edge of amoebae colonies), or inner cells (located 2.5 millimeters towards the center of the colony, from the edge). Videos are confocal stacks, with bacteria showing in green and amoebae appearing as black holes within the bacterial lawn. As was for the macroscopic images, images are shown for D. discoideum, P. violaceum, and A. castellanii. Images depicting drug treatments (Nystatin and Fluorouracil) were obtained using D. discoideum.
This is the raw experimental dataset and the corresponding code to reproduce plots from the paper "Shear-induced migration of confined flexible fibers".
Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
Abstract:
More than 20% Amazon rainforest has been cleared in the past three decades triggering important hydroclimatic changes. Small-scale (~few kilometers) deforestation in the 1980s has caused thermally-triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared to the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately ±25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing a negligible role of large-scale climate variability. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry season hydroclimate. Our study illustrates the strong scale-sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally- to a dynamically-driven hydroclimatic regime.
Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
Abstract:
Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.