Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
Explosive volcanic eruptions have large climate impacts, and can serve as observable tests of the climatic response to radiative forcing. Using a high resolution climate model, we contrast the climate responses to Pinatubo, with symmetric forcing, and those to Santa Maria and Agung, which had meridionally asymmetric forcing. Although Pinatubo had larger global-mean forcing, asymmetric forcing strongly shifts the latitude of tropical rainfall features, leading to larger local precipitation/TC changes. For example, North Atlantic TC activity over is enhanced/reduced by SH-forcing (Agung)/NH-forcing (Santa Maria), but changes little in response to the Pinatubo forcing. Moreover, the transient climate sensitivity estimated from the response to Santa Maria is 20% larger than that from Pinatubo or Agung. This spread in climatic impacts of volcanoes needs to be considered when evaluating the role of volcanoes in global and regional climate, and serves to contextualize the well-observed response to Pinatubo.
This dataset comprises of data associated with the publication "Transferability of data-driven, many-body models for CO2 simulations in the vapor and liquid phases", which can be found at https://doi.org/10.1063/5.0080061. The data includes calculations for a Many-Body decomposition, virial coefficient calculations, orientational molecular scan energies, potential energy fields, correlation plots of training and testing data, vapor-liquid equilibrium simulations, liquid density simulations, and solid cell simulations.
This three-year project, performed by Princeton University in partnership with the University of Minnesota and Brookhaven National Laboratory, examined geologic carbon sequestration in regard to CO2 leakage and potential subsurface liabilities. The research resulted in basin-scale analyses of CO2 and brine leakage in light of uncertainties in the characteristics of leakage processes, and generated frameworks to monetize the risks of leakage interference with competing subsurface resources. The geographic focus was the Michigan sedimentary basin, for which a 3D topographical model was constructed to represent the hydrostratigraphy. Specifically for Ottawa County, a statistical analysis of the hydraulic properties of underlying sedimentary formations was conducted. For plausible scenarios of injection into the Mt. Simon sandstone, leakage rates were estimated and fluxes into shallow drinking-water aquifers were found to be less than natural analogs of CO2 fluxes. We developed the Leakage Impact Valuation (LIV) model in which we identified stakeholders and estimated costs associated with leakage events. It was found that costs could be incurred even in the absence of legal action or other subsurface interference because there are substantial costs of finding and fixing the leak and from injection interruption. We developed a model framework called RISCS, which can be used to predict monetized risk of interference with subsurface resources by combining basin-scale leakage predictions with the LIV method. The project has also developed a cost calculator called the Economic and Policy Drivers Module (EPDM), which comprehensively calculates the costs of carbon sequestration and leakage, and can be used to examine major drivers for subsurface leakage liabilities in relation to specific injection scenarios and leakage events. Finally, we examined the competitiveness of CCS in the energy market. This analysis, though qualitative, shows that financial incentives, such as a carbon tax, are needed for coal combustion with CCS to gain market share. In another part of the project we studied the role of geochemical reactions in affecting the probability of CO2 leakage. A basin-scale simulation tool was modified to account for changes in leakage rates due to permeability alterations, based on simplified mathematical rules for the important geochemical reactions between acidified brines and caprock minerals. In studies of reactive flows in fractured caprocks, we examined the potential for permeability increases, and the extent to which existing reactive transport models would or would not be able to predict it. Using caprock specimens from the Eau Claire and Amherstburg, we found that substantial increases in permeability are possible for caprocks that have significant carbonate content, but minimal alteration is expected otherwise. We also found that while the permeability increase may be substantial, it is much less than what would be predicted from hydrodynamic models based on mechanical aperture alone because the roughness that is generated tends to inhibit flow.
Force-driven parallel shear flow in a spatially periodic domain is shown to be linearly unstable
with respect to both the Reynolds number and the domain aspect ratio. This finding is confirmed
by computer simulations, and a simple expression is derived to determine stable flow conditions.
Periodic extensions of Couette and Poiseuille flows are unstable at Reynolds numbers two orders
of magnitude smaller than their aperiodic equivalents because the periodic boundaries impose
fundamentally different constraints. This instability has important implications for designing computational models of nonlinear dynamic processes with periodicity.
Ant colonies regulate activity in response to changing conditions without using centralized control. Harvester ant colonies forage in the desert for seeds, and their regulation of foraging manages a tradeoff between spending and obtaining water. Foragers lose water while outside in the dry air, but the colony obtains water by metabolizing the fats in the seeds they eat. Previous work shows that the rate at which an outgoing forager leaves the nest depends on its recent experience of brief antennal contact with returning foragers that carry a seed. We examine how this process can yield foraging rates that are robust to uncertainty and responsive to temperature and humidity across minutes to hour-long timescales. To explore possible mechanisms, we develop a low-dimensional analytical model with a small number of parameters that captures observed foraging behavior. The model uses excitability dynamics to represent response to interactions inside the nest and a random delay distribution to represent foraging time outside the nest. We show how feedback of outgoing foragers returning to the nest stabilizes the incoming and outgoing foraging rates to a common value determined by the ``volatility’’ of available foragers. The model exhibits a critical volatility above which there is sustained foraging at a constant rate and below which there is cessation of foraging. To explain how the foraging rates of colonies adjust to temperature and humidity, we propose a mechanism that relies on foragers modifying their volatility after they leave the nest and get exposed to the environment. Our study highlights the importance of feedback in the regulation of foraging activity and points to modulation of volatility as a key to explaining differences in foraging activity in response to conditions and across colonies. Our results present opportunities for generalization to other contexts and systems with excitability and feedback across multiple timescales.
This is the raw experimental dataset and the corresponding code to reproduce plots from the paper "Shear-induced migration of confined flexible fibers".