Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
These GROMACS trajectories show the existence of a critical point in deeply supercooled WAIL water. Also included is the code necessary to reproduce the figures in the corresponding paper from these trajectories. From this data the critical temperature, pressure, and density of the model can be found, and critical fluctuations in the deeply supercooled liquid can be directly observed (in a computer-simulation sense).
Data set corresponding to "NAPS: Integrating pose estimation and tag-based tracking." This dataset contains the corresponding videos, tracking scripts, and SLEAP models along with SLEAP, NAPS, and ArUco tracking results.
Explosive volcanic eruptions have large climate impacts, and can serve as observable tests of the climatic response to radiative forcing. Using a high resolution climate model, we contrast the climate responses to Pinatubo, with symmetric forcing, and those to Santa Maria and Agung, which had meridionally asymmetric forcing. Although Pinatubo had larger global-mean forcing, asymmetric forcing strongly shifts the latitude of tropical rainfall features, leading to larger local precipitation/TC changes. For example, North Atlantic TC activity over is enhanced/reduced by SH-forcing (Agung)/NH-forcing (Santa Maria), but changes little in response to the Pinatubo forcing. Moreover, the transient climate sensitivity estimated from the response to Santa Maria is 20% larger than that from Pinatubo or Agung. This spread in climatic impacts of volcanoes needs to be considered when evaluating the role of volcanoes in global and regional climate, and serves to contextualize the well-observed response to Pinatubo.