Number of results to display per page
Search Results
242. Application of Townsend avalanche theory to tokamak startup by coaxial helicity injection
- Author(s):
- Hammond, K.C.; Raman, R.; Volpe, F.A.
- Abstract:
- Townsend avalanche theory is employed to model and interpret plasma initiation in NSTX by Ohmic heating and coaxial helicity injection (CHI). The model is informed by spatially resolved vacuum calculations of electric field and magnetic field line connection length in the poloidal cross-section. The model is shown to explain observations of Ohmic startup including the duration and location of breakdown. Adapting the model to discharges initiated by CHI offers insight into the causes of upper divertor (absorber) arcs in cases where the discharge fails to initiate in the lower divertor gap. Finally, upper and lower limits are established for vessel gas fill based on requirements for breakdown and radiation. It is predicted that CHI experiments on NSTX-U should be able to use as much as four times the amount of prefill gas employed in CHI experiments in NSTX. This should provide greater flexibility for plasma start-up, as the injector flux is projected to be increased in NSTX-U.
- Type:
- Dataset
- Issue Date:
- September 2017
243. Data for Nature Climate Change article 'Regional dry-season climate changes due to three decades of Amazonian deforestation'
- Author(s):
- Khanna, Jaya; Medvigy, David; Fueglistaler, Stephan; Walko, Robert
- Abstract:
- More than 20% Amazon rainforest has been cleared in the past three decades triggering important hydroclimatic changes. Small-scale (~few kilometers) deforestation in the 1980s has caused thermally-triggered atmospheric circulations that increase regional cloudiness and precipitation frequency. However, these circulations are predicted to diminish as deforestation increases. Here we use multi-decadal satellite records and numerical model simulations to show a regime shift in the regional hydroclimate accompanying increasing deforestation in Rondônia, Brazil. Compared to the 1980s, present-day deforested areas in downwind western Rondônia are found to be wetter than upwind eastern deforested areas during the local dry season. The resultant precipitation change in the two regions is approximately ±25% of the deforested area mean. Meso-resolution simulations robustly reproduce this transition when forced with increasing deforestation alone, showing a negligible role of large-scale climate variability. Furthermore, deforestation-induced surface roughness reduction is found to play an essential role in the present-day dry season hydroclimate. Our study illustrates the strong scale-sensitivity of the climatic response to Amazonian deforestation and suggests that deforestation is sufficiently advanced to have caused a shift from a thermally- to a dynamically-driven hydroclimatic regime.
- Type:
- Dataset and Software
- Issue Date:
- 2017
244. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique
- Author(s):
- Crocker, N.A.; Kubota, S.; Peebles, W.A.; Rhodes, T.L.; Fredrickson, E.D.; Belova, E.; Diallo, A.; LeBlanc, B.P.; Sabbagh, S.A.
- Abstract:
- Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2–4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).
- Type:
- Dataset
- Issue Date:
- November 2017
245. Design of Faraday cup ion detectors built by thin film deposition
- Author(s):
- Szalkowski, G.A.; Darrow, D.S.; Cecil, F.E.
- Abstract:
- Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on JET and NSTX-U. The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.
- Type:
- Dataset
- Issue Date:
- January 2017
246. Drift kinetic effects on the plasma response in high beta spherical tokamak experiments
- Author(s):
- Wang, Z.R.; Park, J.-K.; Menard, J.E.; Liu, Y.Q.; Kaye, S.M.; Gerhardt, S.
- Abstract:
- High $\beta$ plasma response to the rotating n=1 external magnetic perturbations is numerically studied and compared with National Spherical Torus eXperiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows the drift kinetic effects are important to resolve the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit [F. Troyon et al., Plasma Phys. Control. Fusion \textbf{26}, 209 (1984)]. Since the external rotating fields and high plasma rotation are presented in NSTX experiments, the importance of resistive wall effect and plasma rotation on determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy, due to plasma rotation, destabilizes the plasma. The complexity of plasma response, in this study, indicates that MHD modeling, including comprehensive physics e.g. the drift kinetic effects, resistive wall and plasma rotation, is essential to reliably predict the plasma behavior in high beta spherical tokamak device.
- Type:
- Dataset
- Issue Date:
- September 2017
247. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
- Author(s):
- Maingi, R.; Hu, J.S.; Sun, Z.; Tritz, K.; Zuo, G.Z.; Xu, W.; Huang, M.; Meng, X.C.; Canik, J.M.; Diallo, A.; Lunsford, R.; Mansfield, D.K.; Osborne, T.H.; Gong, X.Z.; Wang, Y.F.; Li, Y.Y.
- Abstract:
- We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 sec in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D-alpha baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST [J.S. Hu et al., Phys. Rev. Lett. 114 (2015) 055001]. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs [P.T. Lang et al., Nucl. Fusion 57 (2017) 016030], highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
- Type:
- Dataset
- Issue Date:
- December 2017
248. Electron heating and energy inventory during asymmetric reconnection in a laboratory plasma
- Author(s):
- Yoo, Jongsoo; Na, Byungkeun; Jara-Almonte, Jonathan; Yamada, Maasaki; Ji, Hantao; Roytershteyn, V.; Argall, M. R.; Fox, W.; Chen, Li-Jen
- Abstract:
- Electron heating and the energy inventory during asymmetric reconnection are studied in the laboratory plasma with a density ratio of about 8 across the current sheet. Features of asymmetric reconnection such as the large density gradients near the low-density-side separatrices, asymmetric in-plane electric field, and bipolar out-of-plane magnetic field are observed. Unlike the symmetric case, electrons are also heated near the low-density-side separatrices. The measured parallel electric field may explain the observed electron heating. Although large fluctuations driven by lower-hybrid drift instabilities are also observed near the low-density-side separatrices, laboratory measurements and numerical simulations reported here suggest that they do not play a major role in electron energization. The average electron temperature increase in the exhaust region is proportional to the incoming magnetic energy per an electron/ion pair but exceeds scalings of the previous space observations. This discrepancy is explained by differences in the boundary condition and system size. The profile of electron energy gain from the electric field shows that there is additional electron energy gain associated with the electron diamagnetic current besides a large energy gain near the X-line. This additional energy gain increases electron enthalpy, not the electron temperature. Finally, a quantitative analysis of the energy inventory during asymmetric reconnection is conducted. Unlike the symmetric case where the ion energy gain is about twice more than the electron energy gain, electrons and ions obtain a similar amount of energy during asymmetric reconnection.
- Type:
- Dataset
- Issue Date:
- August 2017
249. Energetic-particle-modified global Alfven eigenmodes
- Author(s):
- Lestz, J.B.; Belova, E.V.; Gorelenkov, N.N.
- Abstract:
- Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfven eigenmodes (GAE) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function -- the normalized injection velocity v_0/v_A and central pitch -- are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v_0/v_A. This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in mode structure could indicate the existence of a new energetic particle mode, referred to here as an energetic-particle-modified GAE (EP-GAE). Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.
- Type:
- Dataset
- Issue Date:
- December 2017
250. Experimental calibration procedures for rotating Lorentz-force flowmeters
- Author(s):
- Hvasta, M. G.; Slighton, N. T.; Kolemen, E.; Fisher, A. E.
- Abstract:
- Rotating Lorentz-force flowmeters are a novel and useful technology with a range of applications in a variety of different industries. However, calibrating these flowmeters can be challenging, time-consuming, and expensive. In this paper, simple calibration procedures for rotating Lorentz-force flowmeters are presented. These procedures eliminate the need for expensive equipment, numerical modeling, redundant flowmeters, and system down-time. The calibration processes are explained in a step-by-step manner and compared to experimental results.
- Type:
- Dataset
- Issue Date:
- 2017