This dataset includes individual CIF files with the refined structure of fluorapatite under compression to 61 GPa. The structures have been discussed in detail in the accompanying manuscript "Single-crystal X-ray diffraction of fluorapatite to 61 GPa"
Wang, Yin; Gilson, Erik; Ebrahimi, Fatima; Goodman, Jeremy; Ji, Hantao
Abstract:
Source data for the article "Observation of Axisymmetric Standard Magnetorotational Instability in the Laboratory" published in Physical Review Letters.
This archive contains spike trains simultaneously recorded from ganglion cells in the tiger salamander retina with a multi-electrode array while viewing a repeated natural movie clip. These data have been analyzed in previous papers, notably Puchalla et al. Neuron 2005 and Schneidman et al. Nature 2006.
Kraus, B. Frances; Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Hollinger, R.; Wang, Shoujun; Song, Huanyu; Nedbailo, R.; Rocca, J. J.; Mancini, R. C.; MacDonald, M. J.; Beatty, C. B.; Shepherd, R.
Abstract:
A high-resolution x-ray spectrometer was coupled with an ultrafast x-ray streak camera to produce time-resolved line shape spectra measured from hot, solid-density plasmas. A Bragg crystal was placed near a laser-produced plasma to maximize throughput; alignment tolerances were established by raytracing. The streak camera produced single-shot time-resolved spectra, heavily sloped due to photon time-of-flight differences, with sufficient reproducibility to accumulate photon statistics. The images are time-calibrated by the slope of streaked spectra and dewarped to generate spectra emitted at different times defined at the source. The streaked spectra demonstrate the evolution of spectral shoulders and other features on ps timescales, showing the feasibility of plasma parameter measurements on the rapid timescales necessary to study high-energy-density plasmas.
Hill, K. W.; Gao, L.; Kraus, B. F.; Bitter, M.; Efthimion, P. C.; Pablant, N. A.; Schneider, M. B.; Thorn, D. B.; Chen, H.; Kauffman, R. L.; Liedahl, D. A.; MacDonald, M. J.; MacPhee, A. G.; Scott, H. A.; Stoupin, S.; Doron, R.; Stambulchik, E.; Maron, Y.; Lahmann, B.
Abstract:
Numerical data used to draw the figures in the manuscript
This is the supplemental material for the manuscript "Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane" submitted to Fusion Engineering and Design. This material includes PDF writeups of the derivations of the axisymmetric extended plane strain model, the elastic properties smearing model, and 20+ MATLAB scripts and functions which implement the model and generate the figures in the paper.
This entry contains video files and tabular data associated with the PhD dissertation titled: The Evolution and Regulation of Morphological Complexity in the Vibrios.
In our study, we compare the three dimensional (3D) morphologic characteristics of Earth's first reef-building animals (archaeocyath sponges) with those of modern, photosynthetic corals. Within this repository are the 3D image data products for both groups of animals. The archaeocyath images were produced through serial grinding and imaging with the Grinding, Imaging, and Reconstruction Instrument at Princeton University. The images in this repository are the downsampled data products used in our study, and the full resolution (>2TB) image stacks are available upon request from the author. For the coral image data, the computed tomography (CT) images of all samples are included at full resolution. Also included in this repository are the manual and automated outline coordinates of the archaeocyath and coral branches, which can be directly used for morphological study.
Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
Abstract:
Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.