This archive contains spike trains simultaneously recorded from ganglion cells in the tiger salamander retina with a multi-electrode array while viewing a repeated natural movie clip. These data have been analyzed in previous papers, notably Puchalla et al. Neuron 2005 and Schneidman et al. Nature 2006.
Recent advances in experimental techniques have allowed the simultaneous recordings of
populations of hundreds of neurons, fostering a debate about the nature of the collective
structure of population neural activity. Much of this debate has focused on the
empirical findings of a phase transition in the parameter space of maximum entropy
models describing the measured neural probability distributions, interpreting this phase
transition to indicate a critical tuning of the neural code. Here, we instead focus on the
possibility that this is a first-order phase transition which provides evidence that the
real neural population is in a `structured', collective state. We show that this collective
state is robust to changes in stimulus ensemble and adaptive state. We find that the
pattern of pairwise correlations between neurons has a strength that is well within the
strongly correlated regime and does not require fine tuning, suggesting that this state is
generic for populations of 100+ neurons. We find a clear correspondence between the
emergence of a phase transition, and the emergence of attractor-like structure in the
inferred energy landscape. A collective state in the neural population, in which neural
activity patterns naturally form clusters, provides a consistent interpretation for our
results.
Berryman, Eleanor J.; Winey, J. M.; Gupta, Yogendra M.; Duffy, Thomas S.
Abstract:
Stishovite (rutile-type SiO2) is the archetype of dense silicates and may occur in post-garnet eclogitic rocks at lower-mantle conditions. Sound velocities in stishovite are fundamental to understanding its mechanical and thermodynamic behavior at high pressure and temperature. Here, we use plate-impact experiments combined with velocity interferometry to determine the stress, density, and longitudinal sound speed in stishovite formed during shock compression of fused silica at 44 GPa and above. The measured sound speeds range from 12.3(8) km/s at 43.8(8) GPa to 9.8(4) km/s at 72.7(11) GPa. The decrease observed at 64 GPa reacts a decrease in the shear modulus of stishovite, likely due to the onset of melting. By 72 GPa, the measured sound speed agrees with the theoretical bulk sound speed indicating loss of all shear stiffness due to complete melting. Our sound velocity results provide direct evidence for shock-induced melting, in agreement with previous pyrometry data.
Bertelli, N; Valeo, E.J.; Green, D.L.; Gorelenkova, M.; Phillips, C.K.; Podesta, M.; Lee, J.P.; Wright, J.C.; Jaeger, E.
Abstract:
At the power levels required for significant heating and current drive
in magnetically-confined toroidal plasma, modification of the particle distribution
function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737
(1975)], with consequent changes in wave propagation and in the location and
amount of absorption. In order to study these effects computationally, both the
finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the
full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys.
Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion
44, 2423 (2002)], have been extended to allow the prescription of arbitrary velocity
distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a
deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional
H absorption varies significantly with changes in parallel temperature but is
essentially independent of perpendicular temperature. On the other hand, for
HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional
beam ion absorption varies mainly with changes in the perpendicular temperature.
The evaluation of the wave-field and power absorption, through the full wave
solver, with the ion distribution function provided by either aMonte-Carlo particle
and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas.
Non-Maxwellian effects generally tends to increase the absorption with respect to
the equivalent Maxwellian distribution.
Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. This process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is driving these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.
Kim, E.-W.; Bertelli, N.; Johnson, J.R.; Valeo, E.; Hosea, J.; Perkins, R.
Abstract:
We illustrate the capabilities of a recently developed two-dimensional full wave code (FW2D) in space and tokamak plasmas by adopting various values of density, magnetic field configuration and strength as well as boundary shape. As example, we first showed fast compressional wave propagation in the inner magnetosphere is dramatically modified by a plasmaspheric plume at Earth's magnetosphere. The results show that wave energy is trapped in the plume showing a leaky eigenmode-like structure with plume, which is similar to the detected magnetosonic waves. We also performed simulations of high harmonic fast waves in the scrape-off layer (SOL) plasmas of the National Spherical Torus eXperiment (NSTX)/NSTX-Upgrade. Comparison the results with previous full-wave simulations show that although the FW2D code uses a cold plasma approximation, the electric field and the fraction of the power losses in the SOL plasmas show excellent consistency and agreement with the previous full wave simulations performed by the AORSA code.