This dataset provides the data generated during the project analyzing ‘Food Consumption Strategies for Addressing Air Pollution, Climate Change, Water Use, and Public Health in China’. It includes the code for generating the alternative dietary scenarios, for analyzing the health impacts of alternative diets, and for visualization of results.
Gartner III, Thomas E.; Torquato, Salvatore; Car, Roberto; Debenedetti, Pablo G.
Abstract:
This dataset contains all data related to the publication "Manifestations of metastable criticality in glassy water-like models detected by large-scale structural properties" by Gartner et al., in preparation 2020. In this work, we used molecular dynamics simulations to explore the relationship between water's polyamorphism (multiple amorphous solid states) and its hypothesized liquid-liquid transition. Using the TIP4P/2005 molecular model of water, we found a surprising signature of water's liquid-liquid critical point in the long-range structure of water's amorphous solid states formed by isobaric cooling at different pressures. This structural signature was absent in two other systems that lack a critical point. This dataset contains molecular dynamics simulation trajectories, as well as processed data, analysis codes, and image files used in the publication.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
This dataset is a sequence of laser-induced fluorescence images of a dye injected in a channel flow with canopy-like stainless steel rods simulating a vegetation canopy stand. The data is acquired close to the channel bottom at z/h=0.2, where z is the height referenced to the channel bed and h is the canopy height. The dataset provides spatial distribution of scalar concentration in a plane parallel to the channel bed. The data has been used (but the data itself has not been published or available to the public) in previous work. The references are: Ghannam, K., Poggi, D., Porporato, A., & Katul, G. (2015). The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorology,157(3), 447–460. Ghannam, K, Poggi, D., Bou-Zeid, E., Katul, G. (2020). Inverse cascade evidenced by information entropy of passive scalars in submerged canopy flows. Geophysical Research Letters (accepted).
Pacheco, Diego A; Thiberge, Stephan; Pnevmatikakis, Eftychios; Murthy, Mala
Abstract:
Sensory pathways are typically studied starting at receptor neurons and following postsynaptic neurons into the brain. However, this leads to a bias in analysis of activity towards the earliest layers of processing. Here, we present new methods for volumetric neural imaging with precise across-brain registration, to characterize auditory activity throughout the entire central brain of Drosophila and make comparisons across trials, individuals, and sexes. We discover that auditory activity is present in most central brain regions and in neurons responsive to other modalities. Auditory responses are temporally diverse, but the majority of activity is tuned to courtship song features. Auditory responses are stereotyped across trials and animals in early mechanosensory regions, becoming more variable at higher layers of the putative pathway, and this variability is largely independent of spontaneous movements. This study highlights the power of using an unbiased, brain-wide approach for mapping the functional organization of sensory activity.
Li, Zhongshu; Gallagher, Kevin P.; Mauzerall, Denise L.
Abstract:
The dataset include a list of power projects outside of China that receive Chinese foreign direct investment from 2000 to 2018. Detailed information including project capacity, location, share of Chinese ownership, type of power generating technologies are collected for each power project.
Data set used to train a Deep Potential (DP) model for crystalline and disordered TiO2 phases. Training data contain atomic forces, potential energy, atomic coordinates and cell tensor. Energy and forces were evaluated with the density functional SCAN, as implemented in Quantum-ESPRESSO. Atomic configurations of crystalline systems were generated by random perturbation of atomic positions (0-0.3 A) and cell tensor (1-10%). Amorphous TiO2 was explored by DP molecular dynamics (DPMD) at temperatures in the range 300−2500 K and pressure in the range 0−81 GPa.
Data set used to train a Deep Potential (DP) model for
subcritical and supercritical water. Training data contain atomic forces,
potential energy, atomic coordinates and cell tensor. Energy and forces
were evaluated with the density functional SCAN. Atomic configurations
were extracted from DP molecular dynamics at P = 250 bar and
T = 553, 623, 663, 733 and 823 K. Input files used to train the DP model
are also provided.
The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
Abstract:
Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.