Fractures in geological formations may enable migration of environmentally relevant fluids, as in leakage of CO2 through caprocks in geologic carbon sequestration. We investigated geochemically induced alterations of fracture geometry in Indiana Limestone specimens. Experiments were the first of their kind, with periodic high-resolution imaging using X-ray computed tomography (xCT) scanning while maintaining high pore pressure (100 bar). We studied two CO2-acidified brines having the same pH (3.3) and comparable thermodynamic
disequilibrium but different equilibrated pressures of CO2 (PCO2 values of 12 and 77 bar). High-PCO2 brine has a faster calcite dissolution kinetic rate because of the accelerating effect of carbonic acid. Contrary to expectations, dissolution extents were comparable in the two experiments. However, progressive xCT
images revealed extensive channelization for high PCO2, explained by strong positive feedback between ongoing flow and reaction. The pronounced channel increasingly directed flow to a small region of the fracture, which explains why the overall dissolution was lower than expected. Despite this, flow simulations revealed large increases in permeability in the high-PCO2 experiment. This study shows that the permeability evolution of dissolving fractures will be larger for faster-reacting fluids. The overall mechanism is not because more rock dissolves, as would be commonly assumed, but because of accelerated fracture channelization.
Bertelli, N; Valeo, E.J.; Green, D.L.; Gorelenkova, M.; Phillips, C.K.; Podesta, M.; Lee, J.P.; Wright, J.C.; Jaeger, E.
Abstract:
At the power levels required for significant heating and current drive
in magnetically-confined toroidal plasma, modification of the particle distribution
function from a Maxwellian shape is likely [T. H. Stix, Nucl. Fusion, 15 737
(1975)], with consequent changes in wave propagation and in the location and
amount of absorption. In order to study these effects computationally, both the
finite-Larmor-radius and the high-harmonic fast wave (HHFW), versions of the
full-wave, hot-plasma toroidal simulation code TORIC [M. Brambilla, Plasma Phys.
Control. Fusion 41, 1 (1999) and M. Brambilla, Plasma Phys. Control. Fusion
44, 2423 (2002)], have been extended to allow the prescription of arbitrary velocity
distributions of the form f(v||, v_perp, psi , theta). For hydrogen (H) minority heating of a
deuterium (D) plasma with anisotropic Maxwellian H distributions, the fractional
H absorption varies significantly with changes in parallel temperature but is
essentially independent of perpendicular temperature. On the other hand, for
HHFW regime with anisotropic Maxwellian fast ion distribution, the fractional
beam ion absorption varies mainly with changes in the perpendicular temperature.
The evaluation of the wave-field and power absorption, through the full wave
solver, with the ion distribution function provided by either aMonte-Carlo particle
and Fokker-Planck codes is also examined for Alcator C-Mod and NSTX plasmas.
Non-Maxwellian effects generally tends to increase the absorption with respect to
the equivalent Maxwellian distribution.
Petsev, Nikolai D.; Nikoubashman, Arash; Latinwo, Folarin
Abstract:
Source code for our genetic algorithm optimization investigation of conglomerate and racemic chiral crystals. In this work, we address challenges in determining the stable structures formed by chiral molecules by applying the framework of genetic algorithms to predict the ground state crystal lattices formed by a chiral tetramer model. Using this code, we explore the relative stability and structures of the model’s conglomerate and racemic crystals, and extract a structural phase diagram for the stable Bravais crystal types in the zero-temperature limit.
Sharma, A. Y.; Cole, M. D. J.; Görler, T.; Chen, Y.; Hatch, D. R.; Guttenfelder, W.; Hager, R.; Sturdevant, B. J.; Ku, S.; Mishchenko, A.; Chang, C. S.