Number of results to display per page
Search Results
52. Natural Movie - Water Surface (Ripples)
- Author(s):
- Ioffe, ML; Berry MJ II.; Palmer SEP
- Type:
- moving image
- Issue Date:
- 2016
53. Resonance in Fast-Wave Amplitude in the Periphery of Cylindrical Plasmas and Application to Edge Losses of Wave Heating Power in Tokamaks
- Author(s):
- Perkins, R.J.; Hosea, J.C.; Bertelli, N.; Taylor, G.; Wilson, J.R.
- Abstract:
- Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. This process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is driving these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.
- Type:
- Dataset
- Issue Date:
- July 2016
54. Two-dimensional full-wave simulations of waves in space and tokamak plasmas
- Author(s):
- Kim, E.-W.; Bertelli, N.; Johnson, J.R.; Valeo, E.; Hosea, J.; Perkins, R.
- Abstract:
- We illustrate the capabilities of a recently developed two-dimensional full wave code (FW2D) in space and tokamak plasmas by adopting various values of density, magnetic field configuration and strength as well as boundary shape. As example, we first showed fast compressional wave propagation in the inner magnetosphere is dramatically modified by a plasmaspheric plume at Earth's magnetosphere. The results show that wave energy is trapped in the plume showing a leaky eigenmode-like structure with plume, which is similar to the detected magnetosonic waves. We also performed simulations of high harmonic fast waves in the scrape-off layer (SOL) plasmas of the National Spherical Torus eXperiment (NSTX)/NSTX-Upgrade. Comparison the results with previous full-wave simulations show that although the FW2D code uses a cold plasma approximation, the electric field and the fraction of the power losses in the SOL plasmas show excellent consistency and agreement with the previous full wave simulations performed by the AORSA code.
- Type:
- Dataset
- Issue Date:
- October 2018
55. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori
- Author(s):
- Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
- Abstract:
- Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
- Type:
- Dataset and Image
- Issue Date:
- April 2019
56. Integrative Mechanisms of Social Attention
- Author(s):
- Bio, Branden; Graziano, Michael
- Abstract:
- Monitoring the attention of others is fundamental to social cognition. Most of the literature on the topic assumes that our social cognitive machinery is tuned specifically to the gaze direction of others as a proxy for attention. This standard assumption reduces attention to an externally visible parameter. Here we show that this assumption is wrong and a deeper, more meaningful representation is involved. We presented subjects with two cues about the attentional state of a face: direction of gaze and emotional expression. We tested whether people relied predominantly on one cue, the other, or both. If the traditional view is correct, then the gaze cue should dominate. Instead, people employed a variety of strategies, some relying on gaze, some on expression, and some on an integration of cues. We also assessed people’s social cognitive ability using two, independent, standard tests. If the traditional view is correct, then social cognitive ability, as assessed by the independent tests, should correlate with the degree to which people successfully use the gaze cue to judge the attention state of the face. Instead, social cognitive ability correlated best with the degree to which people successfully integrated the cues together, instead of with the use of any one specific cue. The results suggest a rethink of a fundamental component of social cognition: monitoring the attention of others involves constructing a deep model that is informed by a combination of cues. Attention is a rich process and monitoring the attention of others involves a similarly rich representation.
- Type:
- Dataset
- Issue Date:
- 22 July 2021
57. Study of Stark Broadening of Krypton Helium-beta Lines and Estimation of Electron Density and Temperature in NIF Compressed Capsules
- Author(s):
- Hill, K. W.; Gao, L.; Kraus, B. F.; Bitter, M.; Efthimion, P. C.; Pablant, N. A.; Schneider, M. B.; Thorn, D. B.; Chen, H.; Kauffman, R. L.; Liedahl, D. A.; MacDonald, M. J.; MacPhee, A. G.; Scott, H. A.; Stoupin, S.; Doron, R.; Stambulchik, E.; Maron, Y.; Lahmann, B.
- Abstract:
- Numerical data used to draw the figures in the manuscript
- Type:
- Dataset
- Issue Date:
- 6 June 2022
58. Wall conditioning and ELM mitigation with boron nitride powder injection in KSTAR
- Author(s):
- Gilson, Erik; Lee, H; Bortolon, A; Choe, W; Diallo, A; Hong, SH; Lee, HM; Maingi, R; Mansfield, DK; Nagy, A; Park, SH; Song, IW; Song, JI; Yun, SW; Nazikian, R
- Abstract:
- Results from KSTAR powder injection experiments, in which tens of milligrams of boron nitride (BN) were dropped into low-power H-mode plasmas, show an improvement in wall conditions in subsequent discharges and, in some cases, a reduction or elimination of edge-localized modes (ELMs). Injected powder is distributed by the plasma flow and is deposited on the wall and, over the course of several discharges, was observed to gradually reduce recycling by 33%, and decrease both the ELM amplitude and frequency. This is the first demonstration of the use of BN for ELM mitigation. In all of these experiments, an Impurity Powder Dropper (IPD) was used to introduce precise, controllable amounts of the materials into ELMy H-mode KSTAR discharges. The plasma duration was between 10 s and 15 s, 𝐼𝑝 = 500 kA, 𝐵𝑇 = 1.8 T, 𝑃NBI = 1.6 MW, and 𝑃ECH = 0.6 MW. Plasma densities were between 2 and 3 × 1019 m−3. In all cases, the pre-fill and startup gas-fueling was kept constant, suggesting that the decrease in baseline D𝛼 emission is in fact due to a reduction in recycling. The results presented herein highlight the viability of powder injection for intra-shot and between-shot wall conditioning.
- Type:
- Dataset
- Issue Date:
- September 2021
59. Mitigation of Alfven activity by 3D magnetic perturbations on NSTX
- Author(s):
- Kramer, G.J; Bortolon, A.; Ferraro, N.M.; Spong, D.A.; Crocker, N.A.; Darrow, D.S.; Fredrickson, E.D.; Kubota, S.; Park, J.-K.; Podesta, M.; Heidbrink, W.W.
- Abstract:
- Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge was found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. The results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.
- Type:
- Dataset
- Issue Date:
- August 2016
60. Modeling of Lithium Granule Injection in NSTX with M3D-C1
- Author(s):
- Fil, A.; Kolemen, E.; Bortolon, A.; Ferraro, N.; Jardin, S.; Parks, P.B.; Lunsford, R.; Maingi, R.
- Abstract:
- In this paper we present initial simulations of pedestal control by Lithium Granule Injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code [1], allowing the simulation of realistic Lithium granule injections. 2D simulations in NSTX L-mode and H-mode plasmas are done and the effect of granule size, injection angle and velocity on the pedestal gradient increase are studied. For H-mode cases, the amplitude of the local pressure perturbation caused by the granules is highly dependent on the solid granule size. In our simulations, reducing the granule injection velocity allows one to inject more particles at the pedestal top.
- Type:
- Dataset
- Issue Date:
- January 2017
61. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges Authors
- Author(s):
- Lunsford, R.; Bortolon, A.; Roquemore, A.L.; Mansfield, D.K.; Jaworski, M.A.; Kaita, R.; Maingi, R.; Nagy, A.
- Abstract:
- By employing a neutral gas shielding (NGS) model to characterize impurity granule injection the pedestal atomic deposition for three different species of granule: lithium, boron, and carbon are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model we are able to quantify the ablation rate and mass deposition location with respect to the plasma density profile. The species specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m/sec are presented for NSTX-U L-mode type plasmas as well as H-mode discharges with low natural ELM frequencies. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50 � 150 m/sec. In H-mode type discharges these simulations show that the majority of the injected granule is ablated within or just past the steep gradient region of the discharge. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of an ELM crash event.
- Type:
- Dataset
- Issue Date:
- July 2017
62. On the scattering correction of fast-ion D-alpha signal on NSTX-U
- Author(s):
- Hao, G.Z; Heidbrink, W.W.; Liu, D.; Stagner, L.; Podesta, M.; Bortolon, A.
- Abstract:
- Analysis of fast-ion D-alpha (FIDA) data on National Spherical Torus Experiment-Upgrade (NSTX-U) shows that the cold Dα line contaminates the FIDA baseline. The scattered light is comparable to the FIDA emission. A scattering correction is required to extract the FIDA signal. Two methods that relate the scattered light contamination to the intensity of the cold Dα line are employed. One method uses laboratory measurements with a calibration lamp; the other method uses data acquired during plasma operation and singular value decomposition analysis. After correction, both the FIDA spectra and spatial profile are in better agreement with theoretical predictions.
- Type:
- Dataset
- Issue Date:
- June 2018
63. Complementary learning systems within the hippocampus: A neural network modeling approach to reconciling episodic memory with statistical learning
- Author(s):
- Schapiro, Anna; Turk-Browne, Nicholas; Botvinick, Matthew; Norman, Kenneth
- Type:
- interactive resource
- Issue Date:
- 2016
64. Princeton Open Ventilation Monitor
- Author(s):
- Bourrianne, Philippe; Chidzik, Stanley; Cohen, Daniel; Elmer, Peter; Hallowell, Thomas; Kilbaugh, Todd J.; Lange, David; Leifer, Andrew M.; Marlow, Daniel R.; Meyers, Peter D.; Normand, Edna; Nunes, Janine; Oh, Myungchul; Page, Lyman; Periera, Talmo; Pivarski, Jim; Schreiner, Henry; Stone, Howard A.; Tank, David W.; Thiberge, Stephan; Tully, Christopher
- Abstract:
- The detailed information on the design and construction of the Princeton Open Ventilation Monitor device and software are contained in this data repository. This information consists of the electrical design files, mechanical design files, bill of materials, human subject recording and analysis code, and a copy of the code repository for operating the patient monitors and central station.
- Type:
- Dataset, Software, and Image
- Issue Date:
- 22 November 2021
65. Design and simulation of the snowflake divertor control for NSTX-U
- Author(s):
- Vail, P. J.; Boyer, M. D.; Welander, A. S.; Kolemen, E.; U.S. Department of Energy contract number DE-AC02-09CH11466
- Abstract:
- This paper presents the development of a physics-based multiple-input-multiple-output algorithm for real-time feedback control of snowflake divertor (SFD) configurations on the National Spherical Torus eXperiment Upgrade (NSTX-U). A model of the SFD configuration response to applied voltages on the divertor control coils is first derived and then used, in conjunction with multivariable control synthesis techniques, to design an optimal state feedback controller for the configuration. To demonstrate the capabilities of the controller, a nonlinear simulator for axisymmetric shape control was developed for NSTX-U which simultaneously evolves the currents in poloidal field coils based upon a set of feedback-computed voltage commands, calculates the induced currents in passive conducting structures, and updates the plasma equilibrium by solving the free-boundary Grad-Shafranov problem. Closed-loop simulations demonstrate that the algorithm enables controlled operations in a variety of SFD configurations and provides capabilities for accurate tracking of time-dependent target trajectories for the divertor geometry. In particular, simulation results suggest that a time-varying controller which can properly account for the evolving SFD dynamical response is not only desirable but necessary for achieving acceptable control performance. The algorithm presented in this paper has been implemented in the NSTX-U Plasma Control System in preparation for future control and divertor physics experiments.
- Type:
- Dataset
- Issue Date:
- April 2019
66. Prediction of electron density and pressure profile shapes on NSTX-U using neural networks
- Author(s):
- Boyer, Mark; Chadwick, Jason
- Abstract:
- A new model for prediction of electron density and pressure profile shapes on NSTX and NSTX-U has been developed using neural networks. The model has been trained and tested on measured profiles from experimental discharges during the first operational campaign of NSTX-U. By projecting profiles onto empirically derived basis functions, the model is able to efficiently and accurately reproduce profile shapes. In order to project the performance of the model to upcoming NSTX-U operations, a large database of profiles from the operation of NSTX is used to test performance as a function of available data. The rapid execution time of the model is well suited to the planned applications, including optimization during scenario development activities, and real-time plasma control. A potential application of the model to real-time profile estimation is demonstrated.
- Type:
- Dataset
- Issue Date:
- February 2021
67. Supplemental material for: Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane
- Author(s):
- Swanson, CPS; Kahn, S; Rana, C; Titus, PH; Brooks, AW; Guttenfelder, W; Zhai, Y; Brown, TG; Menard, JE
- Abstract:
- This is the supplemental material for the manuscript "Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane" submitted to Fusion Engineering and Design. This material includes PDF writeups of the derivations of the axisymmetric extended plane strain model, the elastic properties smearing model, and 20+ MATLAB scripts and functions which implement the model and generate the figures in the paper.
- Type:
- collection, Dataset, and Software
- Issue Date:
- 2022
68. Modelling of Ablatant Deposition from Electromagnetically Driven Radiative Pellets for Disruption Mitigation Studies
- Author(s):
- Lunsford, Robert; Raman, Roger; Brooks, Arthur; Ellis, Robert A.; Lay, W-S;
- Abstract:
- The Electromagnetic Particle Injector (EPI) concept is advanced through the simulation of ablatant deposition into ITER H-mode discharges with calculations showing penetration past the H-mode pedestal for a range of injection velocities and granule sizes concurrent with the requirements of disruption mitigation. As discharge stored energy increases in future fusion devices such as ITER, control and handling of disruption events becomes a critical issue. An unmitigated disruption could lead to failure of the plasma facing components resulting in financially and politically costly repairs. Methods to facilitate the quench of an unstable high current discharge are required. With the onset warning time for some ITER disruption events estimated to be less than 10 ms, a disruption mitigation system needs to be considered which operates at injection speeds greater than gaseous sound speeds. Such an actuator could then serve as a means to augment presently planned pneumatic injection systems. The EPI uses a rail gun concept whereby a radiative payload is delivered into the discharge by means of the JxB forces generated by an external current pulse, allowing for injection velocities in excess of 1 km/s. The present status of the EPI project is outlined, including the addition of boost magnetic coils. These coils augment the self-generated rail gun magnetic field and thus provide a more efficient acceleration of the payload. The coils and the holder designed to constrain them have been modelled with the ANSYS code to ensure structural integrity through the range of operational coil cu
- Type:
- Dataset
- Issue Date:
- June 2019
69. Reductions in Retrieval Competition Predict the Benefit of Repeated Testing
- Author(s):
- Rafidi, Nicole S; Hulbert, Justin C; Brooks, Paula P; Norman, Kenneth A
- Abstract:
- Repeated testing (as opposed to repeated study) leads to improved long-term memory retention, but the mechanism underlying this improvement remains controversial. In this work, we test the hypothesis that retrieval practice benefits subsequent recall by reducing competition from related memories. This hypothesis implies that the degree of reduction in competition between retrieval practice attempts should predict subsequent memory for the practiced items. To test this prediction, we collected electroencephalography (EEG) data across two sessions. In the first session, participants practiced selectively retrieving exemplars from superordinate semantic categories (high competition), as well as retrieving the names of the superordinate categories from exemplars (low competition). In the second session, participants repeatedly studied and were then tested on Swahili-English vocabulary. One week after session two, participants were again tested on the vocabulary. We trained a within-subject classifier on the data from session one to distinguish high and low competition states. We then used this classifier to measure competition across multiple retrieval practice attempts in the second session. The degree to which competition decreased for a given vocabulary word predicted whether that item was subsequently remembered in the third session. These results are consistent with the hypothesis that repeated testing improves retention by reducing competition.
- Type:
- Dataset
- Issue Date:
- April 2018
70. Fusion Pilot Plant performance and the role of a Sustained High Power Density tokamak
- Author(s):
- Menard, Jonathan; Grierson, Brian; Brown, Tom; Rana, Chirag; Zhai, Yuhu; Poli, Francesca; Maingi, Rajesh; Guttenfelder, Walter; Snyder, Philip
- Abstract:
- Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.
- Type:
- Dataset
- Issue Date:
- January 2022
71. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples2
- Author(s):
- C.H. Skinner, C.P. Chrobak, R. Kaita, B.E.Koel
- Abstract:
- Abstract: Tokamak plasma facing components have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration, erosion lifetime, dust and tritium accumulation, and plasma contamination. However high spatial resolution measurements of deposition on the scale of the surface roughness have been lacking to date. We will present elemental images of graphite samples from NSTX-U and DIII-D DiMES experiments performed with a Scanning Auger Microprobe at sub-micron resolution that show strong microscopic variations in deposition and correlate this with 3D topographical maps of surface irregularities. The NSTX-U samples were boronized and exposed to deuterium plasmas and the DiMES samples had localized Al and W films and were exposed to dedicated helium plasmas. Topographical maps of the samples were performed with a 3D confocal optical microscope and compared to the elemental deposition pattern. The results revealed localized deposition concentrated in areas shadowed from the ion flux, incident in a direction calculated (for the DiMES case) by taking account of the magnetic pre-sheath.
- Type:
- Dataset
- Issue Date:
- April 2019
72. Unsupervised identification of the internal states that shape natural behavior
- Author(s):
- Calhoun, Adam; Pillow, Jonathan; Murthy, Mala
- Type:
- Dataset
- Issue Date:
- 28 May 2019
73. Study of the impact of pre- and real-time deposition of lithium on plasma performance on NSTX
- Author(s):
- Canal, G.P.; Maingi, R.; Evans, T.E.; Kaye, S.M.; Mansfield, D.K.
- Abstract:
- The efficiency of two lithium (Li) injection methods used on the National Spherical Torus Experiment (NSTX) are compared in terms of the amount of Li used to produce equivalent plasma performance improvements, namely Li evaporation over the divertor plates, prior to the initiation of the discharge, and real-time Li injection directly into the plasma scrape-off layer during the discharge. The measurements show that the real-time method can affect the energy confinement and edge stability of NSTX plasmas in a more efficient way than the Li evaporation method as it requires only a fraction of the amount of Li used by the evaporation method to produce similar improvements.
- Type:
- Dataset
- Issue Date:
- January 2019
74. ELM frequency enhancement and discharge modification through lithium granule injection into EAST H-modes
- Author(s):
- Lunsford; Hsu, J.S.; Sun, Z.; Maingi, R.; Mansfield, D.K.; Xu, W.; Zuo, G.Z.; Huang, M.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.; EAST Team
- Abstract:
- The injection of impurity granules into fusion research discharges can serve as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule sizes above a threshold, this can result in full control of the ELM cycle, referred to as ELM pacing. For this research, we extend the investigation to conditions where the natural ELM frequency is too high for ELM pacing to be realized. Utilizing multiple sizes of lithium granules and classifying their effects by granule size, we demonstrate that ELM mitigation through frequency multiplication can be used at ELM triggering rates that nominally make ELM pacing unrealizable. We find that above a size threshold, injected granules promptly trigger ELMs and commensurately enhance the ELM frequency . Below this threshold size, injection of an individual granule does not always lead to the prompt triggering of an ELM; however, collective ablation in the edge pedestal region does enhance the ELM frequency. Specifically, Li granules too small to individually trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz; collectively the granules were observed to enhance the natural ELM frequency up to 620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50% decrease of the ELM size.
- Type:
- Dataset
- Issue Date:
- October 2018
75. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST
- Author(s):
- Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J.S.; Mansfield, D.; Xu, W.; Zuo, G.Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.
- Abstract:
- The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.
- Type:
- Dataset
- Issue Date:
- December 2017
76. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
- Author(s):
- Maingi, R.; Hu, J.S.; Sun, Z.; Tritz, K.; Zuo, G.Z.; Xu, W.; Huang, M.; Meng, X.C.; Canik, J.M.; Diallo, A.; Lunsford, R.; Mansfield, D.K.; Osborne, T.H.; Gong, X.Z.; Wang, Y.F.; Li, Y.Y.
- Abstract:
- We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 sec in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D-alpha baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST [J.S. Hu et al., Phys. Rev. Lett. 114 (2015) 055001]. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs [P.T. Lang et al., Nucl. Fusion 57 (2017) 016030], highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
- Type:
- Dataset
- Issue Date:
- December 2017
77. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli
- Author(s):
- Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
- Abstract:
- Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
- Type:
- Dataset, Software, and text
- Issue Date:
- 11 February 2015
78. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment
- Author(s):
- Carlsson, J.; Wilson, J.R.; Hosea, J.; Greenough, N.; Perkins, R.
- Abstract:
- Third-order spectral analysis, in particular the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.
- Type:
- Dataset
- Issue Date:
- June 2016
79. Validation and benchmarking of two particle-in-cell codes for a glow discharge
- Author(s):
- Carlsson, J.; Khrabrov, A.; Kaganovich, I.; Sommerer, T.; Keating, D.
- Abstract:
- The two particle-in-cell codes EDIPIC and LSP are benchmarked and validated for a parallel-plate glow discharge in helium, in which the axial electric field had been carefully measured, primarily to investigate and improve the fidelity of their collision models. The scattering anisotropy of electron-impact ionization, as well as the value of the secondary-electron emission yield, are not well known in this case. The experimental uncertainty for the emission yield corresponds to a factor of two variation in the cathode current. If the emission yield is tuned to make the cathode current computed by each code match the experiment, the computed electric fields are in excellent agreement with each other, and within about 10% of the experimental value. The non-monotonic variation of the width of the cathode fa ll with the applied voltage seen in the experiment is reproduced by both codes. The electron temperature in the negative glow is within experimental error bars for both codes, but the density of slow trapped electrons is underestimated. A more detailed code comparison don e for several synthetic cases of electron-beam injection into helium gas shows that the codes are in excellent agreement for ionization rate, as well as for elastic and excitation collisions with isotropic scattering pattern. The remaining significant discrepancies between the two codes are due to differences in their electron binary-collision models, and for anisotropic scattering due to elastic and excitation collisions.
- Type:
- Dataset
- Issue Date:
- 2017
80. Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability
- Author(s):
- Wang, Yin; Gilson, Erik P.; Ebrahimi, Fatima; Goodman, Jeremy; Caspary, Kyle J.; Winarto, Himawan W.; Ji, Hantao
- Abstract:
- This dataset provides the source data of figures in the main text of the paper "Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability" accepted by Nature Communications.
- Type:
- Dataset
- Issue Date:
- 2022
81. Design of Faraday cup ion detectors built by thin film deposition
- Author(s):
- Szalkowski, G.A.; Darrow, D.S.; Cecil, F.E.
- Abstract:
- Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on JET and NSTX-U. The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.
- Type:
- Dataset
- Issue Date:
- January 2017
82. Verification of the global gyrokinetic stellarator code XGC-S for linear ion temperature gradient driven modes
- Author(s):
- Cole M; Hager R; Moritaka T; Dominski J; Kleiber R; Ku S; Lazerson S; Riemann J; Chang C
- Abstract:
- XGC (X-point Gyrokinetic Code) is a whole-volume, total-f gyrokinetic particle-in-cell code developed for modelling tokamaks.In recent work, XGC has been extended to model more general 3D toroidal magnetic configurations, such as stellarators.These improvements have resulted in the XGC-S version.In this paper, XGC-S is benchmarked in the reduced delta-f limit for linear electrostatic ion temperature gradient-driven microinstabilities, which can underlie turbulent transport in stellarators.An initial benchmark of XGC-S in tokamak geometry shows good agreement with the XGC1, ORB5, and global GENE codes.A benchmark between XGC-S and the EUTERPE global gyrokinetic code for stellarators has also been performed, this time in geometry of the optimised stellarator Wendelstein 7-X.Good agreement has been found for the mode number spectrum, mode structure, and growth rate.
- Type:
- Dataset
- Issue Date:
- August 2019
83. Effects of collisional ion orbit loss on neoclassical tokamak radial electric fields
- Author(s):
- Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
- Abstract:
- Ion orbit loss is considered important for generating the radially inward electric field Er in a tokamak edge plasma. In particular, this effect is emphasized in diverted tokamaks with a magnetic X point. In neoclassical equilibria, Coulomb collisions can scatter ions onto loss orbits and generate a radially outward current, which in steady state is balanced by the radially inward current from viscosity. To quantitatively measure this loss-orbit current in an edge pedestal, an ion-orbit-flux diagnostic has been implemented in the axisymmetric version of the gyrokinetic particle-in-cell code XGC. As the first application of this diagnostic, a neoclassical DIII-D H-mode plasma is studied using gyrokinetic ions and adiabatic electrons. The validity of the diagnostic is demonstrated by studying the collisional relaxation of Er in the core. After this demonstration, the loss-orbit current is numerically measured in the edge pedestal in quasisteady state. In this plasma, it is found that the radial electric force on ions from Er approximately balances the ion radial pressure gradient in the edge pedestal, with the radial force from the plasma flow term being a minor component. The effect of orbit loss on Er is found to be only mild.
- Type:
- Dataset
- Issue Date:
- 2022
84. Electromagnetic total-f algorithm for gyrokinetic particle-in-cell simulations of boundary plasma in XGC
- Author(s):
- Hager, Robert; Ku, Seung-Hoe; Sharma, Amil Y.; Churchill, Randy Michael; Chang, C. S.; Scheinberg, Aaron
- Abstract:
- The simplified delta-f mixed-variable/pull-back electromagnetic simulation algorithm implemented in XGC for core plasma simulations by Cole et al. [Phys. Plasmas 28, 034501 (2021)] has been generalized to a total-f electromagnetic algorithm that can include, for the first time, the boundary plasma in diverted magnetic geometry with neutral particle recycling, turbulence and neoclassical physics. The delta-f mixed-variable/pull-back electromagnetic implementation is based on the pioneering work by Kleiber and Mischenko et al. [Kleiber et al., Phys. Plasmas 23, 032501 (2016); Mishchenko et al., Comput. Phys. Commun. 238, 194 (2019)]. An electromagnetic demonstration simulation is performed in a DIII-D-like, H-mode boundary plasma, including a corresponding comparative electrostatic simulation, which confirms that the electromagnetic simulation is necessary for a higher fidelity understanding of the electron particle and heat transport even at the low-beta pedestal foot in the vicinity of the magnetic separatrix.
- Type:
- Dataset
- Issue Date:
- 21 November 2022
85. Global gyrokinetic study of shaping effects on electromagnetic modes at NSTX aspect ratio with ad hoc parallel magnetic perturbation effects
- Author(s):
- Sharma, A. Y.; Cole, M. D. J.; Görler, T.; Chen, Y.; Hatch, D. R.; Guttenfelder, W.; Hager, R.; Sturdevant, B. J.; Ku, S.; Chang, C. S.
- Abstract:
- Plasma shaping may have a stronger effect on global turbulence in tight-aspect-ratio tokamaks than in conventional-aspect-ratio tokamaks due to the higher toroidicity and more acute poloidal asymmetry in the magnetic field. In addition, previous local gyrokinetic studies have shown that it is necessary to include parallel magnetic field perturbations in order to accurately compute growth rates of electromagnetic modes in tight-aspect-ratio tokamaks. In this work, the effects of elongation and triangularity on global, ion-scale, linear electromagnetic modes are studied at NSTX aspect ratio and high plasma beta using the global gyrokinetic particle-in-cell code XGC. The effects of compressional magnetic perturbations are approximated via a well-known modification to the particle drifts that was developed for flux-tube simulations [N. Joiner et al., Phys. Plasmas 17, 072104 (2010)], without proof of its validity in a global simulation. Magnetic equilibria are re-constructed for each distinct plasma profile that is used. Coulomb collision effects are not considered. Within the limitations imposed by the present study, it is found that linear growth rates of electromagnetic modes (collisionless microtearing modes and kinetic ballooning modes) are significantly reduced by NSTX-like shaping. For example, growth rates of kinetic ballooning modes at high beta are reduced to the level of that of collisionless trapped electron modes.
- Type:
- Dataset
- Issue Date:
- 2022
86. Gyrokinetic understanding of the edge pedestal transport driven by resonant magnetic perturbations in a realistic divertor geometry
- Author(s):
- Hager, R.; Chang, C. S.; Ferraro, N. M.; Nazikian R.
- Abstract:
- Self-consistent simulations of neoclassical and electrostatic turbulent transport in a DIII-D H-mode edge plasma under resonant magnetic perturbations (RMPs) have been performed using the global total-f gyrokinetic particle-in-cell code XGC, in order to study density-pump out and electron heat confinement.The RMP field is imported from the extended magneto-hydrodynamics (MHD) code M3D-C1, taking into account the linear two-fluid plasma response.With both neoclassical and turbulence physics considered together, the XGC simulation reproduces two key features of experimentally observed edge transport under RMPs: increased radial particle transport in the pedestal region that is sufficient to account for the experimental pump-out rate, and suppression of the electron heat flux in the steepest part of the edge pedestal.In the simulation, the density fluctuation amplitude of modes moving in the electron diamagnetic direction increases due to interaction with RMPs in the pedestal shoulder and outward, while the electron temperature fluctuation amplitude decreases.
- Type:
- Dataset
- Issue Date:
- June 2020
87. Neutral recycling effects on ITG turbulence
- Author(s):
- Stotler, D.P.; Lang, J.; Chang, C.S.; Churchill, R.M.; Ku, S.-H.
- Abstract:
- The effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. Ion temperature gradient turbulence is the most fundamental and robust edge plasma instability, having a long radial correlation length and an ability to impact other forms of pedestal turbulence. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in the ExB shearing rate.
- Type:
- Dataset
- Issue Date:
- August 2017
88. Dynamic reconfiguration of the default mode network during narrative comprehension
- Author(s):
- Simony, Erez; Honey, Christopher; Chen, Janice; Lositsky, Olga; Yeshurun, Yaara; Wiesel, Ami; Hasson, Uri
- Abstract:
- Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
- Type:
- Dataset
- Issue Date:
- 18 July 2016
89. Same story, different story: the neural representation of interpretive frameworks
- Author(s):
- Yeshurun, Yaara; Swanson, S; Simony, Erez; Chen, Janice; Lazaridi, C; Honey, Chris; Hasson, Uri
- Type:
- Dataset
- Issue Date:
- 3 November 2016
90. Sherlock Movie Watching Dataset
- Author(s):
- Chen, Janice
- Abstract:
- Our daily lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? In this study, participants viewed a fifty-minute audio-visual movie, then verbally described the events while undergoing functional MRI. These descriptions were completely unguided and highly detailed, lasting for up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated (movie-vs.-recall correlation) in default network, medial temporal, and high-level visual areas; moreover, individual event patterns were highly discriminable and similar between people during recollection (recall-vs.-recall similarity), suggesting the existence of spatially organized memory representations. In posterior medial cortex, medial prefrontal cortex, and angular gyrus, activity patterns during recall were more similar between people than to patterns elicited by the movie, indicating systematic reshaping of percept into memory across individuals. These results reveal striking similarity in how neural activity underlying real-life memories is organized and transformed in the brains of different people as they speak spontaneously about past events.
- Type:
- Dataset
- Issue Date:
- 26 October 2016
91. Whistler wave generation by anisotropic tail electrons during asymmetric magnetic reconnection in space and laboratory
- Author(s):
- Yoo, Jongsoo; Jara-almonte, J.; Yerger, Evan; Wang, Shan; Qian, Tony; Le, Ari; Ji, Hantao; Yamada, Masaaki; Fox, William; Kim, Eun-Hwa; Chen, Li-Jen; Gershman, Daniel
- Abstract:
- Whistler wave generation near the magnetospheric separatrix during reconnection at the dayside magnetopause is studied with data from the Magnetospheric Multiscale (MMS) mission. The dispersion relation of the whistler mode is measured for the first time near the reconnection region in space, which shows that whistler waves propagate nearly parallel to the magnetic field line. A linear analysis indicates that the whistler waves are generated by temperature anisotropy in the electron tail population. This is caused by loss of electrons with a high velocity parallel to the magnetic field to the exhaust region. There is a positive correlation between activities of whistler waves and the lower-hybrid drift instability (LHDI) both in laboratory and space, indicating the enhanced transport by LHDI may be responsible for the loss of electrons with a high parallel velocity.
- Type:
- Dataset
- Issue Date:
- August 2018
92. Saturation of Alfven modes in tokamaks
- Author(s):
- White, R; Gorelenkov, N.; Gorelenkova, M.; Podesta, M.; Ethier, S.; Chen, Y.
- Abstract:
- Growth of Alfven modes driven unstable by a distribution of high energy particles up to saturation is investigated with a guiding center code, using numerical eigenfunctions produced by linear theory and a numerical high energy particle distribution, in order to make detailed comparison with experiment and with models for saturation amplitudes and the modification of beam profiles. Two innovations are introduced. First, a very noise free means of obtaining the mode-particle energy and momentum transfer is introduced, and secondly, a spline representation of the actual beam particle distribution is used.
- Type:
- Dataset
- Issue Date:
- November 2016
93. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples
- Author(s):
- Skinner, C.H.; Chrobak, C.P.; Kaita, R.; Koel, B.E.
- Abstract:
- Tokamak plasma facing components have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration, erosion lifetime, dust and tritium accumulation, and plasma contamination. However high spatial resolution measurements of deposition on the scale of the surface roughness have been lacking to date. We will present elemental images of graphite samples from NSTX-U and DIII-D DiMES experiments performed with a Scanning Auger Microprobe at sub-micron resolution that show strong microscopic variations in deposition and correlate this with 3D topographical maps of surface irregularities. The NSTX-U samples were boronized and exposed to deuterium plasmas and the DiMES samples had localized Al and W films and were exposed to dedicated helium plasmas. Topographical maps of the samples were performed with a 3D confocal optical microscope and compared to the elemental deposition pattern. The results revealed localized deposition concentrated in areas shadowed from the ion flux, incident in a direction calculated (for the DiMES case) by taking account of the magnetic pre-sheath.
- Type:
- Dataset
- Issue Date:
- October 2018
94. Deep convolutional neural networks for multi-scale time-series classification and application to disruption prediction in fusion devices
- Author(s):
- Churchill, R.M; the DIII-D team
- Abstract:
- The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
- Type:
- Dataset
- Issue Date:
- October 2019
95. Vertical forces during VDEs in an ITER plasma and the role of halo currents
- Author(s):
- Clasuer, C; Jardin, S; Ferraro, N
- Abstract:
- Vertical displacement events (VDEs) can occur in elongated tokamaks causing large currents to flow in the vessel and other adjacent metallic structures. To better understand the potential magnitude of the associated forces and the role of the so called ``halo currents'' on them, we have used the M3D-C1 code to simulate potential VDEs in ITER. We used actual values for the vessel resistivity and pre-quench temperatures and, unlike most of the previous studies, the halo region is naturally formed by triggering the thermal quench with an increase in the plasma thermal conductivity. We used the 2D non-linear version of the code and vary the post-thermal quench thermal conductivity profile as well as the boundary temperature in order to generate a wide range of possible cases that could occur in the experiment. We also show that, for a similar condition, increasing the halo current does not increase the total force on the wall since it is offset by a decrease in the toroidal contribution.
- Type:
- Dataset
- Issue Date:
- February 2020
96. Prototype tests of the Electromagnetic Particle Injector-2 for Fast Time Response Disruption Mitigation in Tokamaks
- Author(s):
- Raman, Roger; Lunsford, Robert; Clauser, C.F.; Jardin, S.C; Menard, J.E.; Ono, M.
- Type:
- Dataset
- Issue Date:
- 2021
97. Linear ion-scale micro-stability analysis of high and low-collisionality NSTX discharges and NSTX-U projections
- Author(s):
- Clauser, Cesar; Guttenfelder, Walter; Rafiq, Tariq; Schuster, Eugenio
- Type:
- Dataset
- Issue Date:
- 6 September 2022
98. Interpreting ion-energy distributions using charge exchange emitted from deeply kinetic field-reversed-configuration plasmas
- Author(s):
- Glasser, Alan; Cohen, Samuel
- Type:
- Image
- Issue Date:
- 2022
99. Optimization of the angular orientation for a fast ion loss detector in a tokamak
- Author(s):
- Darrow, D.
- Abstract:
- A scintillator type fast ion loss detector measures the gyroradius and pitch angle distribution of superthermal ions escaping from a magnetically confined fusion plasma at a single location. Described here is a technique for optimizing the angular orientation of such a detector in an axisymmetric tokamak geometry in order to intercept losses over a useful and interesting ranges of pitch angle. The method consists of evaluating the detector acceptance as a function of the fast ion constants of motion, i.e. energy, canonical toroidal momentum, and magnetic moment. The detector acceptance can then be plotted in a plane of constant energy and compared with the relevant orbit class boundaries and fast ion source distributions. Knowledge of expected or interesting mechanisms of loss can further guide selection of the detector orientation. The example of a fast ion loss detector for the National Spherical Torus Experiment-Upgrade (NSTX-U) is considered.
- Type:
- Dataset
- Issue Date:
- January 2017
100. Initial operation and data processing on a system for real-time evaluation of Thomson scattering signals on the Large Helical Device
- Author(s):
- Hammond, K. C.; Laggner, F. M.; Diallo, A.; Doskoczynski, S.; Freeman, C.; Funaba, H.; Gates, D.A.; Rozenblat, R.; Tchilinguirian, G.; Xing, Z.; Yamada, I.; Yasuhara, R.; Zimmer, G.; Kolemen, E.
- Abstract:
- A scalable system for real-time analysis of electron temperature and density based on signals from the Thomson scattering diagnostic, initially developed for and installed on the NSTX-U experiment, was recently adapted for the Large Helical Device (LHD) and operated for the first time during plasma discharges. During its initial operation run, it routinely recorded and processed signals for four spatial points at the laser repetition rate of 30 Hz, well within the system's rated capability for 60 Hz. We present examples of data collected from this initial run and describe subsequent adaptations to the analysis code to improve the fidelity of the temperature calculations.
- Type:
- Dataset
- Issue Date:
- 2021
- « Previous
- Next »
- 1
- 2
- 3
- 4