Number of results to display per page
Search Results
202. Quasioptical modeling of wave beams with and without mode conversion: III. Numerical simulations of mode-converting beams
- Author(s):
- K. Yanagihara, I. Y. Dodin, and S. Kubo
- Abstract:
- This work continues a series of papers where we propose an algorithm for quasioptical modeling of electromagnetic beams with and without mode conversion. The general theory was reported in the first paper of this series, where a parabolic partial differential equation was derived for the field envelope that may contain one or multiple modes with close group velocities. In the second paper, we presented a corresponding code PARADE (PAraxial RAy DEscription) and its test applications to single-mode beams. Here, we report quasioptical simulations of mode-converting beams for the first time. We also demonstrate that PARADE can model splitting of two-mode beams. The numerical results produced by PARADE show good agreement with those of one-dimensional full-wave simulations and also with conventional ray tracing (to the extent that one-dimensional and ray-tracing simulations are applicable).
- Type:
- Dataset
- Issue Date:
- August 2019
203. Real-time capable modeling of neutral beam injection on NSTX-U using neural networks
- Author(s):
- Boyer, M.D.; Kaye, S.; Erickson, K.
- Abstract:
- A new model of heating, current drive, torque and other effects of neutral beam injection on NSTX-U that uses neural networks has been developed. The model has been trained and tested on the results of the Monte Carlo code NUBEAM for the database of experimental discharges taken during the first operational campaign of NSTX-U. By projecting flux surface quantities onto empirically derived basis functions, the model is able to efficiently and accurately reproduce the behavior of both scalars, like the total neutron rate and shine through, and profiles, like beam current drive and heating. The model has been tested on the NSTX-U real-time computer, demonstrating a rapid execution time orders of magnitude faster than the Monte Carlo code that is well suited for the iterative calculations needed to interpret experimental results, optimization during scenario development activities, and real-time plasma control applications. Simulation results of a proposed design for a nonlinear observer that embeds the neural network calculations to estimate the poloidal flux profile evolution, as well as effective charge and fast ion diffusivity, are presented.
- Type:
- Dataset
- Issue Date:
- February 2019
204. Reduced Model for Direct Induction Startup Scenario Development on MAST-U and NSTX-U
- Author(s):
- Battaglia, D.J.; Thornton, A.J.; Gerhardt, S.P.; Kirk, A.; Kogan, L; Menard, J.E.
- Abstract:
- A reduced semi-empirical model using time-dependent axisymmetric vacuum field calculations is used to develop the prefill and feed-forward coil current targets required for reliable direct induction (DI) startup on the new MA-class spherical tokamaks, MAST-U and NSTX-U. The calculations are constrained by operational limits unique to each device, such as the geometry of the conductive elements and active coils, power supply specifications and coil heating and stress limits. The calculations are also constrained by semi-empirical models for sufficient breakdown, current drive, equilibrium and stability of the plasma developed from a shared database. A large database of DI startup on NSTX and NSTX-U is leveraged to quantify the requirements for achieving a reliable breakdown (Ip ~ 20 kA). It is observed that without pre-ionization, STs access the large E/P regime at modest loop voltage (Vloop) where the electrons in the weakly ionized plasma are continually accelerating along the open field lines. This ensures a rapid (order millisecond) breakdown of the neutral gas, even without pre-ionization or high-quality field nulls. The timescale of the initial increase in Ip on NSTX is reproduced in the reduced model provided a mechanism for impeding the applied electric field is included. Most discharges that fail in the startup phase are due to an inconsistency in the evolution of the plasma current (Ip) and equilibrium field or loss of vertical stability during the burn-through phase. The requirements for the self-consistent evolution of the fields in the weakly and full-ionized plasma states are derived from demonstrated DI startup on NSTX, NSTX-U and MAST. The predictive calculations completed for MAST-U and NSTX-U illustrate that the maximum Ip ramp rate (dIp/dt) in the early startup phase is limited by the voltage limits on the poloidal field coils on MAST-U and passive vertical stability on NSTX-U.
- Type:
- Dataset
- Issue Date:
- August 2019
205. Sound velocities in shock-synthesized stishovite to 72 GPa
- Author(s):
- Berryman, Eleanor J.; Winey, J. M.; Gupta, Yogendra M.; Duffy, Thomas S.
- Abstract:
- Stishovite (rutile-type SiO2) is the archetype of dense silicates and may occur in post-garnet eclogitic rocks at lower-mantle conditions. Sound velocities in stishovite are fundamental to understanding its mechanical and thermodynamic behavior at high pressure and temperature. Here, we use plate-impact experiments combined with velocity interferometry to determine the stress, density, and longitudinal sound speed in stishovite formed during shock compression of fused silica at 44 GPa and above. The measured sound speeds range from 12.3(8) km/s at 43.8(8) GPa to 9.8(4) km/s at 72.7(11) GPa. The decrease observed at 64 GPa reacts a decrease in the shear modulus of stishovite, likely due to the onset of melting. By 72 GPa, the measured sound speed agrees with the theoretical bulk sound speed indicating loss of all shear stiffness due to complete melting. Our sound velocity results provide direct evidence for shock-induced melting, in agreement with previous pyrometry data.
- Type:
- Dataset
- Issue Date:
- 2019
206. Sowing the Seeds for More Usable Web Archives: A Usability Study of Archive-It
- Author(s):
- Abrams, Samantha; Antracoli, Alexis; Appel, Rachel; Caust-Ellenbogen, Celia; Dennison, Sarah; Duncan, Sumitra; Ramsay, Stefanie
- Abstract:
- In 2017, seven members of the Archive-It Mid-Atlantic Users Group (AITMA) conducted a study of 14 subjects representative of their stakeholder populations to assess the usability of Archive-It, a web archiving subscription service of the Internet Archive. While Archive-It is the most widely-used tool for web archiving, little is known about how users interact with the service. This study intended to teach us what users expect from web archives, which exist as another form of archival material. End-user subjects executed four search tasks using the public Archive-It interface and the Wayback Machine to access archived information on websites from the facilitators’ own harvested collections and provide feedback about their experiences. The tasks were designed to have straightforward pass or fail outcomes, and the facilitators took notes on the subjects’ behavior and commentary during the sessions. Overall, participants reported mildly positive impressions of Archive-It public user interface based on their session. The study identified several key areas of improvement for the Archive-It service pertaining to metadata options, terminology display, indexing of dates, and the site’s search box.
- Type:
- Dataset
- Issue Date:
- 2019
207. Spontaneous multi-keV electron generation in a low-RF-power axisymmetric mirror machine
- Author(s):
- Swanson, C.;Cohen, S.A.
- Abstract:
- Title: Spontaneous multi-keV electron generation in a low-RF-power axisymmetric mirror machine Abstract: X-ray emission shows the existence of multi-keV electrons in low-temperature, low-power, capacitively-coupled RF-heated magnetic-mirror plasmas that also contain a warm (300 eV) minority electron population. Though these warm electrons are initially passing particles, we suggest that collisionless scattering -- mu non-conservation in the static vacuum field -- is responsible for a minority of them to persist in the mirror cell for thousands of transits during which time a fraction are energized to a characteristic temperature of 3 keV, with some electrons reaching energies above 30 keV. A heuristic model of the heating by a Fermi-acceleration-like mechanism is presented, with mu non-conservation in the static vacuum field as an essential feature.
- Type:
- Dataset
- Issue Date:
- May 2019
208. Study of liquid metal surface wave damping in the presence of magnetic fields and electrical currents
- Author(s):
- Fisher, A.E.; Hvasta, M.G.; Kolemen, E.
- Abstract:
- Experiments and predictions of surface wave damping in liquid metal due to a surface aligned magnetic field and externally regulated j × B force are presented. Fast-flowing, liquid-metal plasma facing components (LM-PFCs) are a proposed alternative to solid PFCs that are unable to handle the high heat flux, thermal stresses, and radiation damage in a tokamak. The significant technical challenges associated with LM-PFCs compared to solid PFCs are justified by greater heat flux management, self-healing properties, and reduced particle recycling. However, undesirable engineering challenges such as evaporation and splashing of the liquid metal introduce excessive impurities into the plasma and degrade plasma performance. Evaporation may be avoided through high-speed flow that limits temperature rise of the liquid metal by reducing heat flux exposure time, but as flow speed increases the surface may become more turbulent and prone to splashing and uneven surfaces. Wave damping is one mechanism that reduces surface disturbance and thus the chances of liquid metal impurity introduction into the plasma. Experiments on the Liquid Metal eXperiment Upgrade (LMX-U) examined damping under the influence of transverse magnetic fields and vertically directed Lorentz force.
- Type:
- Dataset
- Issue Date:
- March 2019
209. TRANSP-based Optimization Towards Tokamak Scenario Development
- Author(s):
- W.P. Wehner, E. Schuster, M.D. Boyer, F. Poli
- Abstract:
- An optimization approach that incorporates the predictive transport code TRANSP is proposed for tokamak scenario development. Optimization methods are often employed to develop open-loop control strategies to aid access to high performance tokamak scenarios. In general, the optimization approaches use control-oriented models, i.e. models that are reduced in complexity and prediction accuracy as compared to physics-oriented transport codes such as TRANSP. In the presented approach, an optimization procedure using the TRANSP code to simulate the tokamak plasma is considered for improved predictive capabilities. As a test case, the neutral beam injection (NBI) power is optimized to develop a control strategy that maximizes the non-inductive current fraction during the ramp-up phase for NSTX-U. Simulation studies towards the achievement of non-inductive ramp up in NSTX-U have already been carried out with the TRANSP code. The optimization-based approach proposed in this work is used to maximize the non-inductive current fraction during ramp-up in NSTX-U, demonstrating that the scenario development task can be automated. An additional test case considers optimization of the current ramp rate in DIII-D for obtaining a stationary plasma characterized by a flat loop voltage profile in the flattop phase.
- Type:
- Dataset
- Issue Date:
- April 2019
210. TRANSP-based closed-loop simulations of current profile optimal regulation in NSTX-Upgrade
- Author(s):
- Ilhan, Z.O.; Boyer. M.D.; Schuster, E.
- Abstract:
- Active control of the toroidal current density profile is critical for the upgraded National Spherical Torus eXperiment device (NSTX-U) to maintain operation at the desired high-performance, MHD-stable, plasma regime. Initial efforts towards current density profile control have led to the development of a control-oriented, physics-based, plasma-response model, which combines the magnetic diffusion equation with empirical correlations for the kinetic profiles and the non-inductive current sources. The developed control-oriented model has been successfully tailored to the NSTX-U geometry and actuators. Moreover, a series of efforts have been made towards the design of model-based controllers, including a linear-quadratic-integral optimal control strategy that can regulate the current density profile around a prescribed target profile while rejecting disturbances. In this work, the tracking performance of the proposed current-profile optimal controller is tested in numerical simulations based on the physics-oriented code TRANSP. These high-fidelity closed-loop simulations, which are a critical step before experimental implementation and testing, are enabled by a flexible framework recently developed to perform feedback control design and simulation in TRANSP.
- Type:
- Dataset
- Issue Date:
- March 2019