A matrix inversion technique is derived to calculate local ion temperature from line-integrated measurements of an extended emission source in an axisymmetric plasma which exactly corrects for both toroidal velocity and radial velocity components. Local emissivity and toroidal velocity can be directly recovered from line-integrated spectroscopic measurements, but an independent measurement of the radial velocity is necessary to complete the temperature inversion. The extension of this technique to handle the radial velocity is relevant for magnetic reconnection and merging compression devices where temperature inversion from spectroscopic measurements is desired. A simulation demonstrates the effects of radial velocity on the determination of ion temperature.
Myers, Clayton; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Jara-Almonte, Jonathan; Fox, William
Abstract:
The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to their corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.
Large-eddy simulations were employed over half-ice and half-water surfaces, with varying surface temperatures, wind speeds, directions, as to test if the atmospheric interaction with the heterogeneous surface can be predicted via a heterogeneity Richardson number. This dataset was used to determine that surface heat fluxes over ice, water, and the aggregate surface seem to be captured reasonably well by the wind direction and the heterogeneity Richardson number, but the mean wind and turbulent kinetic energy (TKE) profiles were not, suggesting that not only the difference in stability between the two surface, but also the individual stabilities over each surface influence the dynamics.
Large-eddy simulations were employed over five different sea ice patterns, with a constant ice fraction, to test if the overlying atmospheric boundary layer (ABL) dynamics and thermodynamics differs. The results of these simulations were used to determine that there were differences in vertical heat flux, momentum flux, and horizontal wind speed, and that more surface information is needed to predict the ABL over the sea ice surface. To see what other surface information is needed, twenty-two landscape metrics were calculated over forty-four different maps at differing resolutions, using the FRAGSTATs program. The results of that analysis are available in a .csv file in this dataset.