Woods, B. J. Q.; Duarte, V. N.; Fredrickson, E. D.; Gorelenkov, N. N.; Podestà, M.; Vann, R. G. L.
Abstract:
Abrupt large events in the Alfvenic and sub-Alfvenic frequency bands in tokamaks are typically correlated with increased fast-ion loss. Here, machine learning is used to speed up the laborious process of characterizing the behavior of magnetic perturbations from corresponding frequency spectrograms that are typically identified by humans. The analysis allows for comparison between different mode character (such as quiescent, fixed frequency, and chirping, avalanching) and plasma parameters obtained from the TRANSP code, such as the ratio of the neutral beam injection (NBI) velocity and the Alfven velocity (v_inj./v_A), the q-profile, and the ratio of the neutral beam beta and the total plasma beta (beta_beam,i / beta). In agreement with the previous work by Fredrickson et al., we find a correlation between beta_beam,i and mode character. In addition, previously unknown correlations are found between moments of the spectrograms and mode character. Character transition from quiescent to nonquiescent behavior for magnetic fluctuations in the 50200-kHz frequency band is observed along the boundary v_phi ~ (1/4)(v_inj. - 3v_A), where v_phi is the rotation velocity.
This is the dataset for the plots presented in the article "CO2-leakage-driven diffusiophoresis causes spontaneous accumulation of charged materials in channel flow."
Surprise signals a discrepancy between past and current beliefs. It is theorized to be linked to affective experiences, the creation of particularly resilient memories, and segmentation of the flow of experience into discrete perceived events. However, the ability to precisely measure naturalistic surprise has remained elusive. We used advanced basketball analytics to derive a quantitative measure of surprise and characterized its behavioral, physiological, and neural correlates in human subjects observing basketball games. We found that surprise was associated with segmentation of ongoing experiences, as reflected by subjectively perceived event boundaries and shifts in neocortical patterns underlying belief states. Interestingly, these effects differed by whether surprising moments contradicted or bolstered current predominant beliefs. Surprise also positively correlated with pupil dilation, activation in subcortical regions associated with dopamine, game enjoyment, and long-term memory. These investigations support key predictions from event segmentation theory and extend theoretical conceptualizations of surprise to real-world contexts.
NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.
Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.
Since 1850 the concentration of atmospheric methane (CH4), a potent greenhouse gas, has more than doubled. Recent studies suggest that emission inventories may be missing sources and underestimating emissions. To investigate whether offshore oil and gas platforms leak CH4 during normal operation, we measured CH4 mole fractions around eight oil and gas production platforms in the North Sea which were neither flaring gas nor off-loading oil. We use the measurements from summer 2017, along with meteorological data, in a Gaussian plume model to estimate CH4 emissions from each platform. We find CH4 mole fractions of between 11 and 370 ppb above background concentrations downwind of the platforms measured, corresponding to a median CH4 emission of 6.8 g CH4 s-1 for each platform, with a range of 2.9 to 22.3 g CH4 s-1. When matched to production records, during our measurements individual platforms lost between 0.04% and 1.4% of gas produced with a median loss of 0.23%. When the measured platforms are considered collectively, (i.e. the sum of platforms’ emission fluxes weighted by the sum of the platforms’ production), we estimate the CH4 loss to be 0.19% of gas production. These estimates are substantially higher than the emissions most recently reported to the National Atmospheric Emission Inventory (NAEI) for total CH4 loss from United Kingdom platforms in the North Sea. The NAEI reports CH4 losses from the offshore oil and gas platforms we measured to be 0.13% of gas production, with most of their emissions coming from gas flaring and offshore oil loading, neither of which were taking place at the time of our measurements. All oil and gas platforms we observed were found to leak CH4 during normal operation and much of this leakage has not been included in UK emission inventories. Further research is required to accurately determine total CH4 leakage from all offshore oil and gas operations and to properly include the leakage in national and international emission inventories.