Natural gas vehicles (NGVs) have been promoted in China to mitigate air pollution, yet our measurements and analyses show that NGV growth in China may have significant negative impacts on climate change. We conducted real-world vehicle emission measurements in China and found high methane emissions from heavy-duty NGVs (90% higher than current emission limits). These emissions have been ignored in previous emission estimates, leading to biased results. Applying our observations to life-cycle analyses, we found that switching to NGVs from conventional vehicles in China has led to a net increase in greenhouse gas (GHG) emissions since 2000. With scenario analyses, we also show that the next decade will be critical for China to reverse the trend with the upcoming China VI standard for heavy-duty vehicles. Implementing and enforcing the China VI standard is challenging, and the method demonstrated here can provide critical information regarding the fleet-level CH4 emissions from NGVs.
Since 1850 the concentration of atmospheric methane (CH4), a potent greenhouse gas, has more than doubled. Recent studies suggest that emission inventories may be missing sources and underestimating emissions. To investigate whether offshore oil and gas platforms leak CH4 during normal operation, we measured CH4 mole fractions around eight oil and gas production platforms in the North Sea which were neither flaring gas nor off-loading oil. We use the measurements from summer 2017, along with meteorological data, in a Gaussian plume model to estimate CH4 emissions from each platform. We find CH4 mole fractions of between 11 and 370 ppb above background concentrations downwind of the platforms measured, corresponding to a median CH4 emission of 6.8 g CH4 s-1 for each platform, with a range of 2.9 to 22.3 g CH4 s-1. When matched to production records, during our measurements individual platforms lost between 0.04% and 1.4% of gas produced with a median loss of 0.23%. When the measured platforms are considered collectively, (i.e. the sum of platforms’ emission fluxes weighted by the sum of the platforms’ production), we estimate the CH4 loss to be 0.19% of gas production. These estimates are substantially higher than the emissions most recently reported to the National Atmospheric Emission Inventory (NAEI) for total CH4 loss from United Kingdom platforms in the North Sea. The NAEI reports CH4 losses from the offshore oil and gas platforms we measured to be 0.13% of gas production, with most of their emissions coming from gas flaring and offshore oil loading, neither of which were taking place at the time of our measurements. All oil and gas platforms we observed were found to leak CH4 during normal operation and much of this leakage has not been included in UK emission inventories. Further research is required to accurately determine total CH4 leakage from all offshore oil and gas operations and to properly include the leakage in national and international emission inventories.
Kramer, G. J.; Bortolon, A.; Ferraro, N. M.; Spong, D. A.; Crocker, N. A.; Darrow, D. S.; Fredrickson, E. D.; Kubota, S.; Park, J.-K.; Podesta, M.; Heidbrink, W. W.
We discuss a novel diagnostic allowing direct measurements of the local electric field in the edge region in NSTX/NSTX-U. This laser based diagnostic's principle consists of depleting the naturally populated $n=3$ level to a Rydberg state --sensitive to electric fields-- that will result in a suppression of part of the $D_{\alpha}$ emission. We refer to this approach as Laser-Induced Rydberg Spectroscopy (LIRyS). It is shown that the local electric field can be measured through the Stark induced resonances observed as dips in the $D_\alpha$ emission. Using forward-modeling of simulated absorption spectra, we show precisions reaching \SI{\pm 2}{\kilo\volt\per\meter} in regions with a local electric field of \SI{15}{\kilo\volt\per\meter}.