Number of results to display per page
Search Results
42. Temporal Structure of Blobs in NSTX
- Author(s):
- Lampert, Mate
- Type:
- Dataset
- Issue Date:
- 21 July 2022
43. The dispersion and propagation of topological Langmuir-cyclotron waves in cold magnetized plasmas
- Author(s):
- Fu, Yichen; Qin, Hong
- Abstract:
- The time evolution of the topological Langmuir-Cyclotron waves excited by an external source.
- Type:
- moving image
- Issue Date:
- 2022
44. Three dimensional archaeocyathide and coral imagery for morphologic analysis
- Author(s):
- Manzuk, Ryan; Maloof, Adam
- Abstract:
- In our study, we compare the three dimensional (3D) morphologic characteristics of Earth's first reef-building animals (archaeocyath sponges) with those of modern, photosynthetic corals. Within this repository are the 3D image data products for both groups of animals. The archaeocyath images were produced through serial grinding and imaging with the Grinding, Imaging, and Reconstruction Instrument at Princeton University. The images in this repository are the downsampled data products used in our study, and the full resolution (>2TB) image stacks are available upon request from the author. For the coral image data, the computed tomography (CT) images of all samples are included at full resolution. Also included in this repository are the manual and automated outline coordinates of the archaeocyath and coral branches, which can be directly used for morphological study.
- Type:
- Dataset, Image, MovingImage, and StillImage
- Issue Date:
- August 2022
45. To dee or not to dee: costs and benefits of altering the triangularity of a steady-state DEMO-like reactor
- Author(s):
- Schwartz, Jacob A.; Nelson, A. O.; Kolemen, Egemen
- Abstract:
- Shaping a tokamak plasma to have a negative triangularity may allow operation in an ELM-free L-mode regime and with a larger strike-point radius, ameliorating divertor power-handling requirements. However, the shaping has a potential drawback in the form of a lower no-wall ideal beta limit, found using the MHD codes CHEASE and DCON. Using the new fusion systems code FAROES, we construct a steady-state DEMO2 reactor model. This model is essentially zero-dimensional and neglects variations in physical mechanisms like turbulence, confinement, and radiative power limits, which could have a substantial impact on the conclusions deduced herein. Keeping its shape otherwise constant, we alter the triangularity and compute the effects on the levelized cost of energy (LCOE). If the tokamak is limited to a fixed B field, then unless other means to increase performance (such as reduced turbulence, improved current drive efficiency or higher density operation) can be leveraged, a negative-triangularity reactor is strongly disfavored in the model due to lower \beta_N limits at negative triangularity, which leads to tripling of the LCOE. However, if the reactor is constrained by divertor heat fluxes and not by magnet engineering, then a negative-triangularity reactor with higher B0 could be favorable: we find a class of solutions at negative triangularity with lower peak heat flux and lower LCOE than those of the equivalent positive triangularity reactors.
- Type:
- Dataset
- Issue Date:
- April 2022
46. Wall conditioning and ELM mitigation with boron nitride powder injection in KSTAR
- Author(s):
- Gilson, Erik; Lee, H; Bortolon, A; Choe, W; Diallo, A; Hong, SH; Lee, HM; Maingi, R; Mansfield, DK; Nagy, A; Park, SH; Song, IW; Song, JI; Yun, SW; Nazikian, R
- Abstract:
- Results from KSTAR powder injection experiments, in which tens of milligrams of boron nitride (BN) were dropped into low-power H-mode plasmas, show an improvement in wall conditions in subsequent discharges and, in some cases, a reduction or elimination of edge-localized modes (ELMs). Injected powder is distributed by the plasma flow and is deposited on the wall and, over the course of several discharges, was observed to gradually reduce recycling by 33%, and decrease both the ELM amplitude and frequency. This is the first demonstration of the use of BN for ELM mitigation. In all of these experiments, an Impurity Powder Dropper (IPD) was used to introduce precise, controllable amounts of the materials into ELMy H-mode KSTAR discharges. The plasma duration was between 10 s and 15 s, 𝐼𝑝 = 500 kA, 𝐵𝑇 = 1.8 T, 𝑃NBI = 1.6 MW, and 𝑃ECH = 0.6 MW. Plasma densities were between 2 and 3 × 1019 m−3. In all cases, the pre-fill and startup gas-fueling was kept constant, suggesting that the decrease in baseline D𝛼 emission is in fact due to a reduction in recycling. The results presented herein highlight the viability of powder injection for intra-shot and between-shot wall conditioning.
- Type:
- Dataset
- Issue Date:
- September 2021
47. A software package for plasma facing component analysis and design: the Heat flux Engineering Analysis Toolkit (HEAT)
- Author(s):
- Looby, Tom; Reinke, Matthew; Wingen, Andreas; Menard, Jonathan; Gerhardt, Stefan; Gray, Travis; Donovan, David; Unterberg, Ezekial; Klabacha, Jonathan; Messineo, Mike
- Abstract:
- The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.
- Type:
- Dataset
- Issue Date:
- March 2021
48. A thermodynamic phase transition in magnetic reconnection
- Author(s):
- Jara-Almonte, Jonathan; Hantao, Ji
- Abstract:
- Data supporting the manuscript "A thermodynamic phase transition in magnetic reconnection" published in Physical Review Letters.
- Type:
- Dataset
- Issue Date:
- 7 July 2021
49. Code and data from "Comparative genomic analysis reveals varying levels of mammalian adaptation to coronavirus infections"
- Author(s):
- King, Sean
- Abstract:
- Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively. Included in this repository are the instructions and corresponding code required to build the dataset and run the analysis in the manuscript.
- Type:
- Dataset
- Issue Date:
- 28 September 2021
50. Coupling between Alfven wave and Kelvin-Helmholtz waves in the low latitude boundary layer
- Author(s):
- Kim, Eun-Hwa; Johnson, Jay; Nykyri, Katariina
- Abstract:
- The Kelvin-Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfven velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfv\'en Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfven wave. There are remarkable differences between the primary and the secondary KH waves including wave frequency, the growth rate, and the ratio between transverse and the compressional component. The secondary KH wave energy is concentrated near the shear Alfven wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at lower Mach number. Because the transverse component of the secondary KH waves is stronger than the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.
- Type:
- Dataset
- Issue Date:
- December 2021
51. CrvA and CrvB form a curvature-inducing module sufficient to induce cell shape complexity in Gram-negative bacteria
- Author(s):
- Martin, Nicholas R; Blackman, Edith; Bratton, Benjamin P; Chase, Katelyn J; Bartlett, Thomas M; Gitai, Zemer
- Abstract:
- Bacterial species have diverse cell shapes that enable motility, colonization, and virulence. The cell wall defines bacterial shape and is primarily built by two cytoskeleton-guided synthesis machines, the elongasome and the divisome. However, the mechanisms producing complex shapes, like the curved-rod shape of Vibrio cholerae, are incompletely defined. Previous studies have reported that species-specific regulation of cytoskeleton-guided machines enables formation of complex bacterial shapes such as cell curvature and cellular appendages. In contrast, we report that CrvA and CrvB are sufficient to induce complex cell shape autonomously of the cytoskeleton in V. cholerae. The autonomy of the CrvAB module also enables it to induce curvature in the Gram-negative species Escherichia coli, Pseudomonas aeruginosa, Caulobacter crescentus, and Agrobacterium tumefaciens. Using inducible gene expression, quantitative microscopy, and biochemistry we show that CrvA and CrvB circumvent the need for patterning via cytoskeletal elements by regulating each other to form an asymmetrically-localized, periplasmic structure that directly binds to the cell wall. The assembly and disassembly of this periplasmic structure enables dynamic changes in cell shape. Bioinformatics indicate that CrvA and CrvB may have diverged from a single ancestral hybrid protein. Using fusion experiments in V. cholerae, we find that a synthetic CrvA/B hybrid protein is sufficient to induce curvature on its own, but that expression of two distinct proteins, CrvA and CrvB, promotes more rapid curvature induction. We conclude that morphological complexity can arise independently of cell shape specification by the core cytoskeleton-guided synthesis machines.
- Type:
- Dataset
- Issue Date:
- 2021
52. Data for "Cerebellar contributions to a brainwide network for flexible behavior"
- Author(s):
- Verpeut, Jessica; Bergeler, Silke; Kislin, Mikhail; Townes, William; Klibaite, Ugne; Dhanerawala, Zahra; Hoag, Austin; Jung, Caroline; Lee, Junuk; Pisano, Thomas; Seagraves, Kelly; Shaevitz, Joshua; Wang, Samuel
- Type:
- Dataset
- Issue Date:
- 2021
53. Data for: 'Facies control on carbonate δ13C on the Great Bahama Bank'
- Author(s):
- Geyman, Emily C.; Maloof, Adam C.
- Abstract:
- The carbon isotopic (δ13C) composition of shallow-water carbonates often is interpreted to reflect the δ13C of the global ocean and is used as a proxy for changes in the global carbon cycle. However, local platform processes, in addition to meteoric and marine diagenesis, may decouple carbonate δ13C from that of the global ocean. To shed light on the extent to which changing sediment grain composition may produce δ13C shifts in the stratigraphic record, we present new δ13C measurements of benthic foraminifera, solitary corals, calcifying green algae, ooids, coated grains, and lime mud from the modern Great Bahama Bank (GBB). This survey of a modern carbonate environment reveals δ13C variability comparable to the largest δ13C excursions in the last two billion years of Earth history.
- Type:
- Dataset
- Issue Date:
- 6 May 2021
54. Data for: 'How is sea level change encoded in carbonate stratigraphy?'
- Author(s):
- Geyman, Emily C.; Maloof, Adam C.; Dyer, Blake
- Abstract:
- The history of organismal evolution, seawater chemistry, and paleoclimate is recorded in layers of carbonate sedimentary rock. Meter-scale cyclic stacking patterns in these carbonates often are interpreted as representing sea level change. A reliable sedimentary proxy for eustasy would be profoundly useful for reconstructing paleoclimate, since sea level responds to changes in temperature and ice volume. However, the translation from water depth to carbonate layering has proven difficult, with recent surveys of modern shallow water platforms revealing little correlation between carbonate facies (i.e., grain size, sedimentary bed forms, ecology) and water depth. We train a convolutional neural network with satellite imagery and new field observations from a 3,000 km2 region northwest of Andros Island (Bahamas) to generate a facies map with 5 m resolution. Leveraging a newly-published bathymetry for the same region, we test the hypothesis that one can extract a signal of water depth change, not simply from individual facies, but from sequences of facies transitions analogous to vertically stacked carbonate strata. Our Hidden Markov Model (HMM) can distinguish relative sea level fall from random variability with ∼90% accuracy. Finally, since shallowing-upward patterns can result from local (autogenic) processes in addition to forced mechanisms such as eustasy, we search for statistical tools to diagnose the presence or absence of external forcings on relative sea level. With a new data-driven forward model that simulates how modern facies mosaics evolve to stack strata, we show how different sea level forcings generate characteristic patterns of cycle thicknesses in shallow carbonates, providing a new tool for quantitative reconstruction of ancient sea level conditions from the geologic record.
- Type:
- Dataset
- Issue Date:
- 1 February 2021
55. Data for: Three-Dimensional Morphometry of Ooids in Oolites: a new tool for more accurate and precise paleoenvironmental interpretation
- Author(s):
- Howes, Bolton; Mehra, Akshay; Maloof, Adam
- Abstract:
- The prevalence of ooids in the stratigraphic record, and their association with shallow-water carbonate environments, make ooids an important paleoenvironmental indicator. Recent advances in the theoretical understanding of ooid morphology, along with empirical studies from Turks and Caicos, Great Salt Lake, and The Bahamas, have demonstrated that the morphology of ooids is indicative of depositional environment and hydraulic conditions. To apply this knowledge from modern environments to the stratigraphic record of Earth history, researchers measure the size and shape of lithified ooids on two-dimensional surfaces (i.e., thin sections or polished slabs), often assuming that random 2D slices intersect the nuclei and that the orientation of the ooids is known. Here we demonstrate that these assumptions rarely are true, resulting in errors of up to 35% on metrics like major axis length. We present a method for making 3D reconstructions by serial grinding and imaging, which enables accurate measurement of the morphology of individual ooids within an oolite, as well as the sorting and porosity of a sample. We also provide three case studies that use the morphology of ooids in oolites to extract environmental information. Each case study demonstrates that 2D measurements can be useful if the environmental signal is large relative to the error from 2D measurements. However, 3D measurements substantially improve the accuracy and precision of environmental interpretations. This study focuses on oolites, but errors from 2D measurements are not unique to oolites; this method can be used to extract accurate grain and porosity measurements from any lithified granular sample.
- Type:
- Dataset
- Issue Date:
- 22 February 2021
56. Deep Behavioral Phenotyping Of Mouse Autism Models using Open-Field Behavior
- Author(s):
- Klibaite, Ugne; Kislin, Mikhail; Verpeut, Jessica L.; Sun, Xiaoting; Shaevitz, Joshua W.; Wang, Samuel S.-H.
- Type:
- Dataset
- Issue Date:
- 16 February 2021
57. Development of a reduced model for energetic particle transport by sawteeth in tokamaks
- Author(s):
- Podesta, Mario
- Type:
- Dataset
- Issue Date:
- 9 November 2021
58. Developments on two lithium vapor-box linear test-stand experiments
- Author(s):
- Schwartz, Jacob A.; Goldston, Robert J.
- Abstract:
- The lithium vapor-box divertor is a possible fusion power exhaust solution.It uses condensation pumping to create a gradient of vapor density in a divertor slot; this should allow a stable detachment front without active feedback.As initial explorations of the concept, two test stands which take the form of three connected cylindrical stainless steel boxes are being developed: one without plasma at PPPL, to test models of lithium evaporation and flow; and one for the linear plasma device Magnum-PSI (at DIFFER in Eindhoven, The Netherlands) to test the ability of a lithium vapor cloud to induce volumetric detachment and redistribute the plasma power.The first experiment uses boxes with diameters of 6 cm, joined by apertures with diameters of 2.2 cm. Up to 1 g of Li is placed in one box, which is heated to up to 600 degrees C. The Li evaporates, then flows to and condenses in the two other, cooler boxes over several minutes. The quantity of Li transported is assessed by weighing the boxes before and after the heating cycle, and is compared to the quantity predicted to flow for the box at its measured temperature using a Direct Simulation Monte Carlo code, SPARTA. With good experimental conditions, the two values agree to within 15%.The experiment on Magnum-PSI is in the conceptual design stage.The design is assessed by simulations using the code B2.5-Eunomia.They show that when the hydrogen-ion plasma beam, with n_e = 4e20 per cubic meter, T_e = 1.5 eV, and r = 1 cm, is passed through a 16 cm long, 12 Pa, 625 degree C Li vapor cloud, the plasma heat flux and pressure on the target are significantly reduced compared to the case without Li.With the Li present, the plasma is cooled by excitation of Li neutrals followed by radiation until it volumetrically recombines, lowering the heat flux from 3.7 MW/m^2 to 0.13 MW/m^2, and the pressure is reduced by 93%, largely by collisions of hydrogen ions with neutral Li.
- Type:
- Dataset
- Issue Date:
- January 2021
59. Dynamics of filaments during the edge-localized mode crash on NSTX
- Author(s):
- Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
- Abstract:
- Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
- Type:
- Dataset
- Issue Date:
- January 2021
60. Effects of Coulomb collisions on lower hybrid drift waves inside a laboratory reconnection current sheet
- Author(s):
- Yoo, Jongsoo; Hu, Yibo; Ji, Jeong-Young; Ji, Hantao; Yamada, Masaaki; Goodman, Aaron; Bergstedt, Kendra; Alt, Andrew
- Type:
- Dataset
- Issue Date:
- 2021