Number of results to display per page
Search Results
102. TRANSP-based closed-loop simulations of current profile optimal regulation in NSTX-Upgrade
- Author(s):
- Ilhan, Z.O.; Boyer. M.D.; Schuster, E.
- Abstract:
- Active control of the toroidal current density profile is critical for the upgraded National Spherical Torus eXperiment device (NSTX-U) to maintain operation at the desired high-performance, MHD-stable, plasma regime. Initial efforts towards current density profile control have led to the development of a control-oriented, physics-based, plasma-response model, which combines the magnetic diffusion equation with empirical correlations for the kinetic profiles and the non-inductive current sources. The developed control-oriented model has been successfully tailored to the NSTX-U geometry and actuators. Moreover, a series of efforts have been made towards the design of model-based controllers, including a linear-quadratic-integral optimal control strategy that can regulate the current density profile around a prescribed target profile while rejecting disturbances. In this work, the tracking performance of the proposed current-profile optimal controller is tested in numerical simulations based on the physics-oriented code TRANSP. These high-fidelity closed-loop simulations, which are a critical step before experimental implementation and testing, are enabled by a flexible framework recently developed to perform feedback control design and simulation in TRANSP.
- Type:
- Dataset
- Issue Date:
- March 2019
103. A dual-mechanism antibiotic kills Gram-negative bacteria and avoids drug resistance
- Author(s):
- Martin, James K; Sheehan, Joseph P; Bratton, Benjamin P; Moore, Gabriel M; Mateus, André; Li, Sophia Hsin-Jung; Kim, Hahn; Rabinowitz, Joshua D; Typas, Athanasios; Savitski, Mikhail M; Wilson, Maxwell Z; Gitai, Zemer
- Abstract:
- The rise of antibiotic resistance and declining discovery of new antibiotics have created a global health crisis. Of particular concern, no new antibiotic classes have been approved for treating Gram-negative pathogens in decades. Here, we characterize a compound, SCH-79797, that kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism of action (MoA) with undetectably-low resistance frequencies. To characterize its MoA, we combined quantitative imaging, proteomic, genetic, metabolomic, and cell-based assays. This pipeline demonstrates that SCH-79797 has two independent cellular targets, folate metabolism and bacterial membrane integrity, and outperforms combination treatments in killing MRSA persisters. Building on the molecular core of SCH-79797, we developed a derivative, Irresistin-16, with increased potency and showed its efficacy against Neisseria gonorrheae in a mouse vaginal infection model. This promising antibiotic lead suggests that combining multiple MoAs onto a single chemical scaffold may be an underappreciated approach to targeting challenging bacterial pathogens.
- Type:
- Dataset
- Issue Date:
- 20 May 2020
104. Supplemental material for: Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane
- Author(s):
- Swanson, CPS; Kahn, S; Rana, C; Titus, PH; Brooks, AW; Guttenfelder, W; Zhai, Y; Brown, TG; Menard, JE
- Abstract:
- This is the supplemental material for the manuscript "Verification, validation, and results of an approximate model for the stress of a Tokamak toroidal field coil at the inboard midplane" submitted to Fusion Engineering and Design. This material includes PDF writeups of the derivations of the axisymmetric extended plane strain model, the elastic properties smearing model, and 20+ MATLAB scripts and functions which implement the model and generate the figures in the paper.
- Type:
- collection, Dataset, and Software
- Issue Date:
- 2022
105. Modelling of Ablatant Deposition from Electromagnetically Driven Radiative Pellets for Disruption Mitigation Studies
- Author(s):
- Lunsford, Robert; Raman, Roger; Brooks, Arthur; Ellis, Robert A.; Lay, W-S;
- Abstract:
- The Electromagnetic Particle Injector (EPI) concept is advanced through the simulation of ablatant deposition into ITER H-mode discharges with calculations showing penetration past the H-mode pedestal for a range of injection velocities and granule sizes concurrent with the requirements of disruption mitigation. As discharge stored energy increases in future fusion devices such as ITER, control and handling of disruption events becomes a critical issue. An unmitigated disruption could lead to failure of the plasma facing components resulting in financially and politically costly repairs. Methods to facilitate the quench of an unstable high current discharge are required. With the onset warning time for some ITER disruption events estimated to be less than 10 ms, a disruption mitigation system needs to be considered which operates at injection speeds greater than gaseous sound speeds. Such an actuator could then serve as a means to augment presently planned pneumatic injection systems. The EPI uses a rail gun concept whereby a radiative payload is delivered into the discharge by means of the JxB forces generated by an external current pulse, allowing for injection velocities in excess of 1 km/s. The present status of the EPI project is outlined, including the addition of boost magnetic coils. These coils augment the self-generated rail gun magnetic field and thus provide a more efficient acceleration of the payload. The coils and the holder designed to constrain them have been modelled with the ANSYS code to ensure structural integrity through the range of operational coil cu
- Type:
- Dataset
- Issue Date:
- June 2019
106. Reductions in Retrieval Competition Predict the Benefit of Repeated Testing
- Author(s):
- Rafidi, Nicole S; Hulbert, Justin C; Brooks, Paula P; Norman, Kenneth A
- Abstract:
- Repeated testing (as opposed to repeated study) leads to improved long-term memory retention, but the mechanism underlying this improvement remains controversial. In this work, we test the hypothesis that retrieval practice benefits subsequent recall by reducing competition from related memories. This hypothesis implies that the degree of reduction in competition between retrieval practice attempts should predict subsequent memory for the practiced items. To test this prediction, we collected electroencephalography (EEG) data across two sessions. In the first session, participants practiced selectively retrieving exemplars from superordinate semantic categories (high competition), as well as retrieving the names of the superordinate categories from exemplars (low competition). In the second session, participants repeatedly studied and were then tested on Swahili-English vocabulary. One week after session two, participants were again tested on the vocabulary. We trained a within-subject classifier on the data from session one to distinguish high and low competition states. We then used this classifier to measure competition across multiple retrieval practice attempts in the second session. The degree to which competition decreased for a given vocabulary word predicted whether that item was subsequently remembered in the third session. These results are consistent with the hypothesis that repeated testing improves retention by reducing competition.
- Type:
- Dataset
- Issue Date:
- April 2018
107. Geometric concepts for stellarator permanent magnet arrays
- Author(s):
- Hammond, K. C.; Zhu, C.; Brown, T.; Corrigan, K.; Gates, D. A.; Sibilia, M.
- Abstract:
- The development of stellarators that use permanent magnet arrays to shape their confining magnetic fields has been a topic of recent interest, but the requirements for how such magnets must be shaped, manufactured, and assembled remain to be determined. To address these open questions, we have performed a study of geometric concepts for magnet arrays with the aid of the newly developed MAGPIE code. A proposed experiment similar to the National Compact Stellarator Experiment (NCSX) is used as a test case. Two classes of magnet geometry are explored: curved bricks that conform to a regular grid in cylindrical coordinates, and hexahedra that conform to the toroidal plasma geometry. In addition, we test constraints on the magnet polarization. While magnet configurations constrained to be polarized normally to a toroidal surface around the plasma are unable to meet the required magnetic field parameters when subject to physical limitations on the strength of present-day magnets, configurations with unconstrained polarizations are shown to satisfy the physics requirements for a targeted plasma.
- Type:
- Dataset
- Issue Date:
- July 2020
108. Fusion Pilot Plant performance and the role of a Sustained High Power Density tokamak
- Author(s):
- Menard, Jonathan; Grierson, Brian; Brown, Tom; Rana, Chirag; Zhai, Yuhu; Poli, Francesca; Maingi, Rajesh; Guttenfelder, Walter; Snyder, Philip
- Abstract:
- Recent U.S. fusion development strategy reports all recommend that the U.S. should pursue innovative science and technology to enable construction of a Fusion Pilot Plant (FPP) that produces net electricity from fusion at low capital cost. Compact tokamaks have been proposed as a means of potentially reducing the capital cost of a fusion pilot plant. However, compact steady-state tokamak FPPs face the challenge of integrating a high fraction of self-driven current with high core confinement, plasma pressure, and high divertor parallel heat flux. This integration is sufficiently challenging that a dedicated sustained-high-power-density (SHPD) tokamak facility is proposed by the U.S. community as the optimal way to close this integration gap. Performance projections for the steady-state tokamak FPP regime are presented and a preliminary SHPD device with substantial flexibility in lower aspect ratio (A=2-2.5), shaping, and divertor configuration to narrow gaps to a FPP is described.
- Type:
- Dataset
- Issue Date:
- January 2022
109. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples2
- Author(s):
- C.H. Skinner, C.P. Chrobak, R. Kaita, B.E.Koel
- Abstract:
- Abstract: Tokamak plasma facing components have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration, erosion lifetime, dust and tritium accumulation, and plasma contamination. However high spatial resolution measurements of deposition on the scale of the surface roughness have been lacking to date. We will present elemental images of graphite samples from NSTX-U and DIII-D DiMES experiments performed with a Scanning Auger Microprobe at sub-micron resolution that show strong microscopic variations in deposition and correlate this with 3D topographical maps of surface irregularities. The NSTX-U samples were boronized and exposed to deuterium plasmas and the DiMES samples had localized Al and W films and were exposed to dedicated helium plasmas. Topographical maps of the samples were performed with a 3D confocal optical microscope and compared to the elemental deposition pattern. The results revealed localized deposition concentrated in areas shadowed from the ion flux, incident in a direction calculated (for the DiMES case) by taking account of the magnetic pre-sheath.
- Type:
- Dataset
- Issue Date:
- April 2019
110. Unsupervised identification of the internal states that shape natural behavior
- Author(s):
- Calhoun, Adam; Pillow, Jonathan; Murthy, Mala
- Type:
- Dataset
- Issue Date:
- 28 May 2019
111. Neoclassical transport in strong gradient regions of large aspect ratio tokamaks
- Author(s):
- Trinczek, Silvia; Parra, Felix I.; Catto, Peter J.; Calvo, Iván; Landreman, Matt
- Abstract:
- We present a new neoclassical transport model for large aspect ratio tokamaks where the gradient scale lengths are of the size of the ion poloidal gyroradius. Previous work on neoclassical transport across transport barriers assumed large density and potential gradients but a small temperature gradient, or neglected the gradient of the mean parallel flow. Using large aspect ratio and low collisionality expansions, we relax these restrictive assumptions. We define a new set of variables based on conserved quantities, which simplifies the drift kinetic equation whilst keeping strong gradients, and derive equations describing the transport of particles, parallel momentum and energy by ions in the banana regime. The poloidally varying parts of density and electric potential are included. Studying contributions from both passing and trapped particles, we show that the resulting transport is dominated by trapped particles. We find that a non-zero neoclassical particle flux requires parallel momentum input which could be provided through interaction with turbulence or impurities. We derive upper and lower bounds for the energy flux across a transport barrier in both temperature and density and present example profiles and fluxes.
- Type:
- Dataset
- Issue Date:
- 2023
112. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry
- Author(s):
- Coury, M.; Guttenfelder, W.; Mikkelsen, D.; Canik, J.; Canal, G.; Diallo, A.; Kaye, S.; Kramer, G.; Maingi, R.
- Abstract:
- Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lihiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with unstable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for eta(e,exp)~2.2, with higher growth rates for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, reflecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.
- Type:
- Dataset
- Issue Date:
- June 2016
113. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U
- Author(s):
- Frerichs, H.; Waters, I.; Schmitz, O.; Canal, G.P.; Evans, T.E.; Feng, Y.; Soukhanovskii, V.A.
- Abstract:
- The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.
- Type:
- Dataset
- Issue Date:
- June 2016
114. Study of the impact of pre- and real-time deposition of lithium on plasma performance on NSTX
- Author(s):
- Canal, G.P.; Maingi, R.; Evans, T.E.; Kaye, S.M.; Mansfield, D.K.
- Abstract:
- The efficiency of two lithium (Li) injection methods used on the National Spherical Torus Experiment (NSTX) are compared in terms of the amount of Li used to produce equivalent plasma performance improvements, namely Li evaporation over the divertor plates, prior to the initiation of the discharge, and real-time Li injection directly into the plasma scrape-off layer during the discharge. The measurements show that the real-time method can affect the energy confinement and edge stability of NSTX plasmas in a more efficient way than the Li evaporation method as it requires only a fraction of the amount of Li used by the evaporation method to produce similar improvements.
- Type:
- Dataset
- Issue Date:
- January 2019
115. ELM frequency enhancement and discharge modification through lithium granule injection into EAST H-modes
- Author(s):
- Lunsford; Hsu, J.S.; Sun, Z.; Maingi, R.; Mansfield, D.K.; Xu, W.; Zuo, G.Z.; Huang, M.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.; EAST Team
- Abstract:
- The injection of impurity granules into fusion research discharges can serve as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule sizes above a threshold, this can result in full control of the ELM cycle, referred to as ELM pacing. For this research, we extend the investigation to conditions where the natural ELM frequency is too high for ELM pacing to be realized. Utilizing multiple sizes of lithium granules and classifying their effects by granule size, we demonstrate that ELM mitigation through frequency multiplication can be used at ELM triggering rates that nominally make ELM pacing unrealizable. We find that above a size threshold, injected granules promptly trigger ELMs and commensurately enhance the ELM frequency . Below this threshold size, injection of an individual granule does not always lead to the prompt triggering of an ELM; however, collective ablation in the edge pedestal region does enhance the ELM frequency. Specifically, Li granules too small to individually trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz; collectively the granules were observed to enhance the natural ELM frequency up to 620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50% decrease of the ELM size.
- Type:
- Dataset
- Issue Date:
- October 2018
116. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST
- Author(s):
- Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J.S.; Mansfield, D.; Xu, W.; Zuo, G.Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.
- Abstract:
- The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.
- Type:
- Dataset
- Issue Date:
- December 2017
117. ELM elimination with Li powder injection in EAST discharges using the tungsten upper divertor
- Author(s):
- Maingi, R.; Hu, J.S.; Sun, Z.; Tritz, K.; Zuo, G.Z.; Xu, W.; Huang, M.; Meng, X.C.; Canik, J.M.; Diallo, A.; Lunsford, R.; Mansfield, D.K.; Osborne, T.H.; Gong, X.Z.; Wang, Y.F.; Li, Y.Y.
- Abstract:
- We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 sec in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D-alpha baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST [J.S. Hu et al., Phys. Rev. Lett. 114 (2015) 055001]. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs [P.T. Lang et al., Nucl. Fusion 57 (2017) 016030], highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
- Type:
- Dataset
- Issue Date:
- December 2017
118. Attentional Modulation of Brain Responses to Primary Appetitive and Aversive Stimuli
- Author(s):
- Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
- Abstract:
- Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
- Type:
- Dataset, Software, and text
- Issue Date:
- 11 February 2015
119. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment
- Author(s):
- Carlsson, J.; Wilson, J.R.; Hosea, J.; Greenough, N.; Perkins, R.
- Abstract:
- Third-order spectral analysis, in particular the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.
- Type:
- Dataset
- Issue Date:
- June 2016
120. Validation and benchmarking of two particle-in-cell codes for a glow discharge
- Author(s):
- Carlsson, J.; Khrabrov, A.; Kaganovich, I.; Sommerer, T.; Keating, D.
- Abstract:
- The two particle-in-cell codes EDIPIC and LSP are benchmarked and validated for a parallel-plate glow discharge in helium, in which the axial electric field had been carefully measured, primarily to investigate and improve the fidelity of their collision models. The scattering anisotropy of electron-impact ionization, as well as the value of the secondary-electron emission yield, are not well known in this case. The experimental uncertainty for the emission yield corresponds to a factor of two variation in the cathode current. If the emission yield is tuned to make the cathode current computed by each code match the experiment, the computed electric fields are in excellent agreement with each other, and within about 10% of the experimental value. The non-monotonic variation of the width of the cathode fa ll with the applied voltage seen in the experiment is reproduced by both codes. The electron temperature in the negative glow is within experimental error bars for both codes, but the density of slow trapped electrons is underestimated. A more detailed code comparison don e for several synthetic cases of electron-beam injection into helium gas shows that the codes are in excellent agreement for ionization rate, as well as for elastic and excitation collisions with isotropic scattering pattern. The remaining significant discrepancies between the two codes are due to differences in their electron binary-collision models, and for anisotropic scattering due to elastic and excitation collisions.
- Type:
- Dataset
- Issue Date:
- 2017
121. Effects of Axial Boundary Conductivity on a Free Stewartson-Shercliff Layer
- Author(s):
- Caspary, Kyle J.; Choi, Dahan; Ebrahimi, Fatima; Gilson, Erik P.; Goodman, Jeremy; Ji, Hantao
- Abstract:
- The effects of axial boundary conductivity on the formation and stability of a magnetized free Stewartson-Shercliff layer (SSL) in a short Taylor-Couette device are reported. As the axial field increases with insulating endcaps, hydrodynamic Kelvin-Helmholtz-type instabilities set in at the SSLs of the conducting fluid, resulting in a much reduced flow shear. With conducting endcaps, SSLs respond to an axial field weaker by the square root of the conductivity ratio of endcaps to fluid. Flow shear continuously builds up as the axial field increases despite the local violation of the Rayleigh criterion, leading to a large number of hydrodynamically unstable modes. Numerical simulations of both the mean flow and the instabilities are in agreement with the experimental results.
- Type:
- Dataset
- Issue Date:
- 2018
122. Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability
- Author(s):
- Wang, Yin; Gilson, Erik P.; Ebrahimi, Fatima; Goodman, Jeremy; Caspary, Kyle J.; Winarto, Himawan W.; Ji, Hantao
- Abstract:
- This dataset provides the source data of figures in the main text of the paper "Identification of a non-axisymmetric mode in laboratory experiments searching for standard magnetorotational instability" accepted by Nature Communications.
- Type:
- Dataset
- Issue Date:
- 2022
123. Design of Faraday cup ion detectors built by thin film deposition
- Author(s):
- Szalkowski, G.A.; Darrow, D.S.; Cecil, F.E.
- Abstract:
- Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on JET and NSTX-U. The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.
- Type:
- Dataset
- Issue Date:
- January 2017
124. A novel scheme for error field correction in permanent magnet stellarators
- Author(s):
- Rutkowski, Adam; Hammond, Kenneth; Zhu, Caoxiang; Gates, David; Chambliss, Amelia
- Abstract:
- Stellarators offer a promising path towards fusion reactors, but their design and construction are complicated by stringent tolerance requirements on highly complex 3D coils. A potential way to simplify the engineering requirements for stellarators is to use simple planar toroidal field coils along with permanent magnet arrays to generate shaping fields. In order to ensure sufficient field accuracy while minimizing engineering complexity and system cost, new techniques are required to correct the field produced by the permanent magnet arrays to within requirements set by plasma physics. This work describes a novel correction method developed for this purpose. This analysis is applied to the design of a quasi-axisymmetric stellarator that employs a combination of permanent magnets and planar toroidal field coils to generate its magnetic field. Analysis techniques and initial results using the method for error correction on a proposed permanent magnet stellarator are shown, and it is demonstrated that the method successfully meets the design requirements of the project.
- Type:
- Dataset
- Issue Date:
- 7 December 2022
125. Verification of the global gyrokinetic stellarator code XGC-S for linear ion temperature gradient driven modes
- Author(s):
- Cole M; Hager R; Moritaka T; Dominski J; Kleiber R; Ku S; Lazerson S; Riemann J; Chang C
- Abstract:
- XGC (X-point Gyrokinetic Code) is a whole-volume, total-f gyrokinetic particle-in-cell code developed for modelling tokamaks.In recent work, XGC has been extended to model more general 3D toroidal magnetic configurations, such as stellarators.These improvements have resulted in the XGC-S version.In this paper, XGC-S is benchmarked in the reduced delta-f limit for linear electrostatic ion temperature gradient-driven microinstabilities, which can underlie turbulent transport in stellarators.An initial benchmark of XGC-S in tokamak geometry shows good agreement with the XGC1, ORB5, and global GENE codes.A benchmark between XGC-S and the EUTERPE global gyrokinetic code for stellarators has also been performed, this time in geometry of the optimised stellarator Wendelstein 7-X.Good agreement has been found for the mode number spectrum, mode structure, and growth rate.
- Type:
- Dataset
- Issue Date:
- August 2019
126. Effects of collisional ion orbit loss on neoclassical tokamak radial electric fields
- Author(s):
- Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
- Abstract:
- Ion orbit loss is considered important for generating the radially inward electric field Er in a tokamak edge plasma. In particular, this effect is emphasized in diverted tokamaks with a magnetic X point. In neoclassical equilibria, Coulomb collisions can scatter ions onto loss orbits and generate a radially outward current, which in steady state is balanced by the radially inward current from viscosity. To quantitatively measure this loss-orbit current in an edge pedestal, an ion-orbit-flux diagnostic has been implemented in the axisymmetric version of the gyrokinetic particle-in-cell code XGC. As the first application of this diagnostic, a neoclassical DIII-D H-mode plasma is studied using gyrokinetic ions and adiabatic electrons. The validity of the diagnostic is demonstrated by studying the collisional relaxation of Er in the core. After this demonstration, the loss-orbit current is numerically measured in the edge pedestal in quasisteady state. In this plasma, it is found that the radial electric force on ions from Er approximately balances the ion radial pressure gradient in the edge pedestal, with the radial force from the plasma flow term being a minor component. The effect of orbit loss on Er is found to be only mild.
- Type:
- Dataset
- Issue Date:
- 2022
127. Effects of collisional ion orbit loss on tokamak radial electric field and toroidal rotation in an L-mode plasma
- Author(s):
- Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
- Abstract:
- Ion orbit loss has been used to model the formation of a strong negative radial electric field Er in the tokamak edge, as well as edge momentum transport and toroidal rotation. To quantitatively measure ion orbit loss, an orbit-flux formulation has been developed and numerically applied to the gyrokinetic particle-in-cell code XGC. We study collisional ion orbit loss in an axisymmetric DIII-D L-mode plasma using gyrokinetic ions and drift-kinetic electrons. Numerical simulations, where the plasma density and temperature profiles are maintained through neutral ionization and heating, show the formation of a quasisteady negative Er in the edge. We have measured a radially outgoing ion gyrocenter flux due to collisional scattering of ions into the loss orbits, which is balanced by the radially incoming ion gyrocenter flux from confined orbits on the collisional time scale. This suggests that collisional ion orbit loss can shift Er in the negative direction compared to that in plasmas without orbit loss. It is also found that collisional ion orbit loss can contribute to a radially outgoing (counter-current) toroidal-angular-momentum flux, which is not balanced by the toroidal-angular-momentum flux carried by ions on the confined orbits. Therefore, the edge toroidal rotation shifts in the co-current direction on the collisional time scale.
- Type:
- Dataset
- Issue Date:
- 2023
128. Electromagnetic total-f algorithm for gyrokinetic particle-in-cell simulations of boundary plasma in XGC
- Author(s):
- Hager, Robert; Ku, Seung-Hoe; Sharma, Amil Y.; Churchill, Randy Michael; Chang, C. S.; Scheinberg, Aaron
- Abstract:
- The simplified delta-f mixed-variable/pull-back electromagnetic simulation algorithm implemented in XGC for core plasma simulations by Cole et al. [Phys. Plasmas 28, 034501 (2021)] has been generalized to a total-f electromagnetic algorithm that can include, for the first time, the boundary plasma in diverted magnetic geometry with neutral particle recycling, turbulence and neoclassical physics. The delta-f mixed-variable/pull-back electromagnetic implementation is based on the pioneering work by Kleiber and Mischenko et al. [Kleiber et al., Phys. Plasmas 23, 032501 (2016); Mishchenko et al., Comput. Phys. Commun. 238, 194 (2019)]. An electromagnetic demonstration simulation is performed in a DIII-D-like, H-mode boundary plasma, including a corresponding comparative electrostatic simulation, which confirms that the electromagnetic simulation is necessary for a higher fidelity understanding of the electron particle and heat transport even at the low-beta pedestal foot in the vicinity of the magnetic separatrix.
- Type:
- Dataset
- Issue Date:
- 21 November 2022
129. Global gyrokinetic study of shaping effects on electromagnetic modes at NSTX aspect ratio with ad hoc parallel magnetic perturbation effects
- Author(s):
- Sharma, A. Y.; Cole, M. D. J.; Görler, T.; Chen, Y.; Hatch, D. R.; Guttenfelder, W.; Hager, R.; Sturdevant, B. J.; Ku, S.; Chang, C. S.
- Abstract:
- Plasma shaping may have a stronger effect on global turbulence in tight-aspect-ratio tokamaks than in conventional-aspect-ratio tokamaks due to the higher toroidicity and more acute poloidal asymmetry in the magnetic field. In addition, previous local gyrokinetic studies have shown that it is necessary to include parallel magnetic field perturbations in order to accurately compute growth rates of electromagnetic modes in tight-aspect-ratio tokamaks. In this work, the effects of elongation and triangularity on global, ion-scale, linear electromagnetic modes are studied at NSTX aspect ratio and high plasma beta using the global gyrokinetic particle-in-cell code XGC. The effects of compressional magnetic perturbations are approximated via a well-known modification to the particle drifts that was developed for flux-tube simulations [N. Joiner et al., Phys. Plasmas 17, 072104 (2010)], without proof of its validity in a global simulation. Magnetic equilibria are re-constructed for each distinct plasma profile that is used. Coulomb collision effects are not considered. Within the limitations imposed by the present study, it is found that linear growth rates of electromagnetic modes (collisionless microtearing modes and kinetic ballooning modes) are significantly reduced by NSTX-like shaping. For example, growth rates of kinetic ballooning modes at high beta are reduced to the level of that of collisionless trapped electron modes.
- Type:
- Dataset
- Issue Date:
- 2022
130. Gyrokinetic understanding of the edge pedestal transport driven by resonant magnetic perturbations in a realistic divertor geometry
- Author(s):
- Hager, R.; Chang, C. S.; Ferraro, N. M.; Nazikian R.
- Abstract:
- Self-consistent simulations of neoclassical and electrostatic turbulent transport in a DIII-D H-mode edge plasma under resonant magnetic perturbations (RMPs) have been performed using the global total-f gyrokinetic particle-in-cell code XGC, in order to study density-pump out and electron heat confinement.The RMP field is imported from the extended magneto-hydrodynamics (MHD) code M3D-C1, taking into account the linear two-fluid plasma response.With both neoclassical and turbulence physics considered together, the XGC simulation reproduces two key features of experimentally observed edge transport under RMPs: increased radial particle transport in the pedestal region that is sufficient to account for the experimental pump-out rate, and suppression of the electron heat flux in the steepest part of the edge pedestal.In the simulation, the density fluctuation amplitude of modes moving in the electron diamagnetic direction increases due to interaction with RMPs in the pedestal shoulder and outward, while the electron temperature fluctuation amplitude decreases.
- Type:
- Dataset
- Issue Date:
- June 2020
131. Neutral recycling effects on ITG turbulence
- Author(s):
- Stotler, D.P.; Lang, J.; Chang, C.S.; Churchill, R.M.; Ku, S.-H.
- Abstract:
- The effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. Ion temperature gradient turbulence is the most fundamental and robust edge plasma instability, having a long radial correlation length and an ability to impact other forms of pedestal turbulence. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in the ExB shearing rate.
- Type:
- Dataset
- Issue Date:
- August 2017
132. The 21st year: transcription, motif list, and relation score
- Author(s):
- Chang, Claire H. C.; Lazaridi, Christina; Yeshurun, Yaara; Norman, Kenneth A.; Hasson, Uri
- Abstract:
- This study examined how the brain dynamically updates event representations by integrating new information over multiple minutes while segregating irrelevant input. A professional writer custom-designed a narrative with two independent storylines, interleaving across minute-long segments (ABAB). In the last (C) part, characters from the two storylines meet and their shared history is revealed. Part C is designed to induce the spontaneous recall of past events, upon the recurrence of narrative motifs from A/B, and to shed new light on them. Our fMRI results showed storyline-specific neural patterns, which were reinstated (i.e. became more active) during storyline transitions. This effect increased along the processing timescale hierarchy, peaking in the default mode network. Similarly, the neural reinstatement of motifs was found during part C. Furthermore, participants showing stronger motif reinstatement performed better in integrating A/B and C events, demonstrating the role of memory reactivation in information integration over intervening irrelevant events.
- Type:
- Dataset and text
- Issue Date:
- 2021
133. Dynamic reconfiguration of the default mode network during narrative comprehension
- Author(s):
- Simony, Erez; Honey, Christopher; Chen, Janice; Lositsky, Olga; Yeshurun, Yaara; Wiesel, Ami; Hasson, Uri
- Abstract:
- Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
- Type:
- Dataset
- Issue Date:
- 18 July 2016
134. Neural pattern change during encoding of a narrative predicts retrospective duration estimates
- Author(s):
- Lositsky, Olga; Chen, Janice; Toker, Daniel; Honey, Christopher; Hasson, Uri; Norman, Kenneth
- Abstract:
- What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people's subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analysis found that the neural pattern distance between two clips at encoding was correlated with duration estimates in the right entorhinal cortex and right pars orbitalis. Moreover, a whole-brain searchlight analysis revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions.
- Type:
- Dataset
- Issue Date:
- 12 March 2016
135. Same story, different story: the neural representation of interpretive frameworks
- Author(s):
- Yeshurun, Yaara; Swanson, S; Simony, Erez; Chen, Janice; Lazaridi, C; Honey, Chris; Hasson, Uri
- Type:
- Dataset
- Issue Date:
- 3 November 2016
136. Sherlock Movie Watching Dataset
- Author(s):
- Chen, Janice
- Abstract:
- Our daily lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? In this study, participants viewed a fifty-minute audio-visual movie, then verbally described the events while undergoing functional MRI. These descriptions were completely unguided and highly detailed, lasting for up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated (movie-vs.-recall correlation) in default network, medial temporal, and high-level visual areas; moreover, individual event patterns were highly discriminable and similar between people during recollection (recall-vs.-recall similarity), suggesting the existence of spatially organized memory representations. In posterior medial cortex, medial prefrontal cortex, and angular gyrus, activity patterns during recall were more similar between people than to patterns elicited by the movie, indicating systematic reshaping of percept into memory across individuals. These results reveal striking similarity in how neural activity underlying real-life memories is organized and transformed in the brains of different people as they speak spontaneously about past events.
- Type:
- Dataset
- Issue Date:
- 26 October 2016
137. Whistler wave generation by anisotropic tail electrons during asymmetric magnetic reconnection in space and laboratory
- Author(s):
- Yoo, Jongsoo; Jara-almonte, J.; Yerger, Evan; Wang, Shan; Qian, Tony; Le, Ari; Ji, Hantao; Yamada, Masaaki; Fox, William; Kim, Eun-Hwa; Chen, Li-Jen; Gershman, Daniel
- Abstract:
- Whistler wave generation near the magnetospheric separatrix during reconnection at the dayside magnetopause is studied with data from the Magnetospheric Multiscale (MMS) mission. The dispersion relation of the whistler mode is measured for the first time near the reconnection region in space, which shows that whistler waves propagate nearly parallel to the magnetic field line. A linear analysis indicates that the whistler waves are generated by temperature anisotropy in the electron tail population. This is caused by loss of electrons with a high velocity parallel to the magnetic field to the exhaust region. There is a positive correlation between activities of whistler waves and the lower-hybrid drift instability (LHDI) both in laboratory and space, indicating the enhanced transport by LHDI may be responsible for the loss of electrons with a high parallel velocity.
- Type:
- Dataset
- Issue Date:
- August 2018
138. Saturation of Alfven modes in tokamaks
- Author(s):
- White, R; Gorelenkov, N.; Gorelenkova, M.; Podesta, M.; Ethier, S.; Chen, Y.
- Abstract:
- Growth of Alfven modes driven unstable by a distribution of high energy particles up to saturation is investigated with a guiding center code, using numerical eigenfunctions produced by linear theory and a numerical high energy particle distribution, in order to make detailed comparison with experiment and with models for saturation amplitudes and the modification of beam profiles. Two innovations are introduced. First, a very noise free means of obtaining the mode-particle energy and momentum transfer is introduced, and secondly, a spline representation of the actual beam particle distribution is used.
- Type:
- Dataset
- Issue Date:
- November 2016
139. Elemental and topographical imaging of microscopic variations in deposition on NSTX-U and DIII-D samples
- Author(s):
- Skinner, C.H.; Chrobak, C.P.; Kaita, R.; Koel, B.E.
- Abstract:
- Tokamak plasma facing components have surface roughness that can cause microscopic spatial variations in erosion and deposition and hence influence material migration, erosion lifetime, dust and tritium accumulation, and plasma contamination. However high spatial resolution measurements of deposition on the scale of the surface roughness have been lacking to date. We will present elemental images of graphite samples from NSTX-U and DIII-D DiMES experiments performed with a Scanning Auger Microprobe at sub-micron resolution that show strong microscopic variations in deposition and correlate this with 3D topographical maps of surface irregularities. The NSTX-U samples were boronized and exposed to deuterium plasmas and the DiMES samples had localized Al and W films and were exposed to dedicated helium plasmas. Topographical maps of the samples were performed with a 3D confocal optical microscope and compared to the elemental deposition pattern. The results revealed localized deposition concentrated in areas shadowed from the ion flux, incident in a direction calculated (for the DiMES case) by taking account of the magnetic pre-sheath.
- Type:
- Dataset
- Issue Date:
- October 2018
140. Deep convolutional neural networks for multi-scale time-series classification and application to disruption prediction in fusion devices
- Author(s):
- Churchill, R.M; the DIII-D team
- Abstract:
- The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
- Type:
- Dataset
- Issue Date:
- October 2019
141. Vertical forces during VDEs in an ITER plasma and the role of halo currents
- Author(s):
- Clasuer, C; Jardin, S; Ferraro, N
- Abstract:
- Vertical displacement events (VDEs) can occur in elongated tokamaks causing large currents to flow in the vessel and other adjacent metallic structures. To better understand the potential magnitude of the associated forces and the role of the so called ``halo currents'' on them, we have used the M3D-C1 code to simulate potential VDEs in ITER. We used actual values for the vessel resistivity and pre-quench temperatures and, unlike most of the previous studies, the halo region is naturally formed by triggering the thermal quench with an increase in the plasma thermal conductivity. We used the 2D non-linear version of the code and vary the post-thermal quench thermal conductivity profile as well as the boundary temperature in order to generate a wide range of possible cases that could occur in the experiment. We also show that, for a similar condition, increasing the halo current does not increase the total force on the wall since it is offset by a decrease in the toroidal contribution.
- Type:
- Dataset
- Issue Date:
- February 2020
142. Prototype tests of the Electromagnetic Particle Injector-2 for Fast Time Response Disruption Mitigation in Tokamaks
- Author(s):
- Raman, Roger; Lunsford, Robert; Clauser, C.F.; Jardin, S.C; Menard, J.E.; Ono, M.
- Type:
- Dataset
- Issue Date:
- 2021
143. Linear ion-scale micro-stability analysis of high and low-collisionality NSTX discharges and NSTX-U projections
- Author(s):
- Clauser, Cesar; Guttenfelder, Walter; Rafiq, Tariq; Schuster, Eugenio
- Type:
- Dataset
- Issue Date:
- 6 September 2022
144. CLEVR-Matrices
- Author(s):
- Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
- Abstract:
- A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered 3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
- Type:
- Dataset
- Issue Date:
- 1 March 2023
145. Visual Analogy Extrapolation Challenge (VAEC)
- Author(s):
- Webb, Taylor; Dulberg, Zachary; Frankland, Steven; Petrov, Alexander; O'Reilly, Randall; Cohen, Jonathan
- Abstract:
- Extrapolation -- the ability to make inferences that go beyond the scope of one's experiences -- is a hallmark of human intelligence. By contrast, the generalization exhibited by contemporary neural network algorithms is largely limited to interpolation between data points in their training corpora. In this paper, we consider the challenge of learning representations that support extrapolation. We introduce a novel visual analogy benchmark that allows the graded evaluation of extrapolation as a function of distance from the convex domain defined by the training data. We also introduce a simple technique, context normalization, that encourages representations that emphasize the relations between objects. We find that this technique enables a significant improvement in the ability to extrapolate, considerably outperforming a number of competitive techniques.
- Type:
- Dataset and Image
- Issue Date:
- 2020
146. Interpreting ion-energy distributions using charge exchange emitted from deeply kinetic field-reversed-configuration plasmas
- Author(s):
- Glasser, Alan; Cohen, Samuel
- Type:
- Image
- Issue Date:
- 2022
147. Design of an arrangement of cubic magnets for a quasi-axisymmetric stellarator experiment
- Author(s):
- Hammond, Kenneth; Zhu, Caoxiang; Corrigan, Keith; Gates, David; Lown, Robert; Mercurio, Robert; Qian, Tony; Zarnstorff, Michael
- Abstract:
- The usage of permanent magnets to shape the confining field of a stellarator has the potential to reduce or eliminate the need for non-planar coils. As a proof-of-concept for this idea, we have developed a procedure for designing an array of cubic permanent magnets that works in tandem with a set of toroidal-field coils to confine a stellarator plasma. All of the magnets in the design are constrained to have identical geometry and one of three polarization types in order to simplify fabrication while still producing sufficient field accuracy. We present some of the key steps leading to the design, including the geometric arrangement of the magnets around the device, the procedure for optimizing the polarizations according to three allowable magnet types, and the choice of magnet types to be used. We apply these methods to design an array of rare-Earth permanent magnets that can be paired with a set of planar toroidal-field coils to confine a quasi-axisymmetric plasma with a toroidal magnetic field strength of about 0.5 T on axis.
- Type:
- Dataset
- Issue Date:
- 2022
148. Optimization of the angular orientation for a fast ion loss detector in a tokamak
- Author(s):
- Darrow, D.
- Abstract:
- A scintillator type fast ion loss detector measures the gyroradius and pitch angle distribution of superthermal ions escaping from a magnetically confined fusion plasma at a single location. Described here is a technique for optimizing the angular orientation of such a detector in an axisymmetric tokamak geometry in order to intercept losses over a useful and interesting ranges of pitch angle. The method consists of evaluating the detector acceptance as a function of the fast ion constants of motion, i.e. energy, canonical toroidal momentum, and magnetic moment. The detector acceptance can then be plotted in a plane of constant energy and compared with the relevant orbit class boundaries and fast ion source distributions. Knowledge of expected or interesting mechanisms of loss can further guide selection of the detector orientation. The example of a fast ion loss detector for the National Spherical Torus Experiment-Upgrade (NSTX-U) is considered.
- Type:
- Dataset
- Issue Date:
- January 2017
149. Initial operation and data processing on a system for real-time evaluation of Thomson scattering signals on the Large Helical Device
- Author(s):
- Hammond, K. C.; Laggner, F. M.; Diallo, A.; Doskoczynski, S.; Freeman, C.; Funaba, H.; Gates, D.A.; Rozenblat, R.; Tchilinguirian, G.; Xing, Z.; Yamada, I.; Yasuhara, R.; Zimmer, G.; Kolemen, E.
- Abstract:
- A scalable system for real-time analysis of electron temperature and density based on signals from the Thomson scattering diagnostic, initially developed for and installed on the NSTX-U experiment, was recently adapted for the Large Helical Device (LHD) and operated for the first time during plasma discharges. During its initial operation run, it routinely recorded and processed signals for four spatial points at the laser repetition rate of 30 Hz, well within the system's rated capability for 60 Hz. We present examples of data collected from this initial run and describe subsequent adaptations to the analysis code to improve the fidelity of the temperature calculations.
- Type:
- Dataset
- Issue Date:
- 2021
150. Modeling of a Laser-Induced Rydberg Spectroscopy diagnostic for Direct Measurement of the Local Electric Field in the Edge Region of NSTX/NSTX-U
- Author(s):
- Reymond, L.; Diallo, A.; Vekselman, V.
- Abstract:
- We discuss a novel diagnostic allowing direct measurements of the local electric field in the edge region in NSTX/NSTX-U. This laser based diagnostic's principle consists of depleting the naturally populated $n=3$ level to a Rydberg state --sensitive to electric fields-- that will result in a suppression of part of the $D_{\alpha}$ emission. We refer to this approach as Laser-Induced Rydberg Spectroscopy (LIRyS). It is shown that the local electric field can be measured through the Stark induced resonances observed as dips in the $D_\alpha$ emission. Using forward-modeling of simulated absorption spectra, we show precisions reaching \SI{\pm 2}{\kilo\volt\per\meter} in regions with a local electric field of \SI{15}{\kilo\volt\per\meter}.
- Type:
- Dataset
- Issue Date:
- July 2018