Number of results to display per page
Search Results
202. Injected mass deposition thresholds for lithium granule instigated triggering of edge localized modes on EAST
- Author(s):
- Lunsford, R.; Sun, Z.; Maingi, R.; Hu, J.S.; Mansfield, D.; Xu, W.; Zuo, G.Z.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Huang, M.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.
- Abstract:
- The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.
- Type:
- Dataset
- Issue Date:
- December 2017
203. Kinetic neoclassical calculations of impurity radiation profiles
- Author(s):
- Stotler, D.P.; Battaglia, D.J.; Hager, R.; Kim, K.; Koskela, T.; Park, G.; Reinke, M.L.
- Abstract:
- Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.
- Type:
- Dataset
- Issue Date:
- 2017
204. M3D-C1 simulations of the plasma response to RMPs in NSTX-U single-null and snowflake divertor configurations
- Author(s):
- Canal, G.P.; Ferraro, N.M.; Evans, T.E.; Osborne, T.H.; Menard, J.E.; Ahn, J.-W.; Maingi, R.; Wingen, A.; Ciro, D.; Frerichs, H.; Schmitz, O.; Soukhanovskii, V.; Waters, I.
- Abstract:
- Non-axisymmetric control coils and the so-called snowflake divertor configuration are two potential solutions proposed to solve two separate outstanding issues on the path towards self-sustained burning plasma operations, namely the transient energy bursts caused by edge localized modes and the steady state heat exhaust problem. In a reactor, these two proposed solutions would have to operate simultaneously and it is, therefore, important to investigate their compatibility and to identify possible conflicts that could prevent them from operating simultaneously. In this work, single- and two-fluid resistive magnetohydrodynamic calculations are used to investigate the effect of externally applied magnetic perturbations on the snowflake divertor configuration. The calculations are based on simulated NSTX-U plasmas and the results show that additional and longer magnetic lobes are created in the null-point region of the snowflake configuration, compared to those in the conventional single-null. The intersection of these longer and additional lobes with the divertor plates are expected to cause more striations in the particle and heat flux target profiles. In addition, the results indicate that the size of the magnetic lobes, in both single-null and snowflake configurations, are more sensitive to resonant magnetic perturbations than to non-resonant magnetic perturbations. The results also suggest that lower values of current in non-axisymmetric control coils would be required to suppress edge localized modes in plasmas with the snowflake configuration.
- Type:
- Dataset
- Issue Date:
- July 2017
205. Modeling of Lithium Granule Injection in NSTX with M3D-C1
- Author(s):
- Fil, A.; Kolemen, E.; Bortolon, A.; Ferraro, N.; Jardin, S.; Parks, P.B.; Lunsford, R.; Maingi, R.
- Abstract:
- In this paper we present initial simulations of pedestal control by Lithium Granule Injection (LGI) in NSTX. A model for small granule ablation has been implemented in the M3D-C1 code [1], allowing the simulation of realistic Lithium granule injections. 2D simulations in NSTX L-mode and H-mode plasmas are done and the effect of granule size, injection angle and velocity on the pedestal gradient increase are studied. For H-mode cases, the amplitude of the local pressure perturbation caused by the granules is highly dependent on the solid granule size. In our simulations, reducing the granule injection velocity allows one to inject more particles at the pedestal top.
- Type:
- Dataset
- Issue Date:
- January 2017
206. Multi-species impurity granule injection and mass deposition projections in NSTX-U discharges Authors
- Author(s):
- Lunsford, R.; Bortolon, A.; Roquemore, A.L.; Mansfield, D.K.; Jaworski, M.A.; Kaita, R.; Maingi, R.; Nagy, A.
- Abstract:
- By employing a neutral gas shielding (NGS) model to characterize impurity granule injection the pedestal atomic deposition for three different species of granule: lithium, boron, and carbon are determined. Utilizing the duration of ablation events recorded on experiments performed at DIII-D to calibrate the NGS model we are able to quantify the ablation rate and mass deposition location with respect to the plasma density profile. The species specific granule shielding constant is then used to model granule ablation within NSTX-U discharges. Simulations of 300, 500 and 700 micron diameter granules injected at 50 m/sec are presented for NSTX-U L-mode type plasmas as well as H-mode discharges with low natural ELM frequencies. Additionally, ablation calculations of 500 micron granules of each species are presented at velocities ranging from 50 � 150 m/sec. In H-mode type discharges these simulations show that the majority of the injected granule is ablated within or just past the steep gradient region of the discharge. At this radial position, the perturbation to the background plasma generated by the ablating granule can lead to conditions advantageous for the rapid triggering of an ELM crash event.
- Type:
- Dataset
- Issue Date:
- July 2017
207. Natural Movie - Water Surface (Ripples)
- Author(s):
- Ioffe, ML; Berry MJ II.; Palmer SEP
- Type:
- moving image
- Issue Date:
- 2016
208. Neutral recycling effects on ITG turbulence
- Author(s):
- Stotler, D.P.; Lang, J.; Chang, C.S.; Churchill, R.M.; Ku, S.-H.
- Abstract:
- The effects of recycled neutral atoms on tokamak ion temperature gradient (ITG) driven turbulence have been investigated in a steep edge pedestal, magnetic separatrix configuration, with the full-f edge gryokinetic code XGC1. Ion temperature gradient turbulence is the most fundamental and robust edge plasma instability, having a long radial correlation length and an ability to impact other forms of pedestal turbulence. The neutral atoms enhance the ITG turbulence, first, by increasing the ion temperature gradient in the pedestal via the cooling effects of charge exchange and, second, by a relative reduction in the ExB shearing rate.
- Type:
- Dataset
- Issue Date:
- August 2017
209. Noise correlations in the human brain and their impact on pattern classification
- Author(s):
- Bejjanki, Vikranth R.; da Silveira, Rava Azeredo; Cohen, Jonathan D.; Turk-Browne, Nicholas B.
- Abstract:
- Multivariate decoding methods, such as multivoxel pattern analysis (MVPA), are highly effective at extracting information from brain imaging data. Yet, the precise nature of the information that MVPA draws upon remains controversial. Most current theories emphasize the enhanced sensitivity imparted by aggregating across voxels that have mixed and weak selectivity. However, beyond the selectivity of individual voxels, neural variability is correlated across voxels, and such noise correlations may contribute importantly to accurate decoding. Indeed, a recent computational theory proposed that noise correlations enhance multivariate decoding from heterogeneous neural populations. Here we extend this theory from the scale of neurons to functional magnetic resonance imaging (fMRI) and show that noise correlations between heterogeneous populations of voxels (i.e., voxels selective for different stimulus variables) contribute to the success of MVPA. Specifically, decoding performance is enhanced when voxels with high vs. low noise correlations (measured during rest or in the background of the task) are selected during classifier training. Conversely, voxels that are strongly selective for one class in a GLM or that receive high classification weights in MVPA tend to exhibit high noise correlations with voxels selective for the other class being discriminated against. Furthermore, we use simulations to show that this is a general property of fMRI data and that selectivity and noise correlations can have distinguishable influences on decoding. Taken together, our findings demonstrate that if there is signal in the data, the resulting above-chance classification accuracy is modulated by the magnitude of noise correlations.
- Type:
- Dataset
- Issue Date:
- August 2017
210. Nonlinear simulations of beam-driven Compressional Alfvén Eigenmodes in NSTX
- Author(s):
- Belova, E.V.; Gorelenkov, N.N.; Crocker, N.A.; Lestz, J.B.; Fredrickson, E.D.; Tang, S.; Tritz, K.
- Abstract:
- Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfven eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n=4-9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfven wave (KAW) that occurs on the high-field side at the Alfven resonance location. High-frequency Alfven eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam-driven CAEs dissipate their energy at the resonance location, therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.
- Type:
- Dataset
- Issue Date:
- April 2017
211. Optimization of the angular orientation for a fast ion loss detector in a tokamak
- Author(s):
- Darrow, D.
- Abstract:
- A scintillator type fast ion loss detector measures the gyroradius and pitch angle distribution of superthermal ions escaping from a magnetically confined fusion plasma at a single location. Described here is a technique for optimizing the angular orientation of such a detector in an axisymmetric tokamak geometry in order to intercept losses over a useful and interesting ranges of pitch angle. The method consists of evaluating the detector acceptance as a function of the fast ion constants of motion, i.e. energy, canonical toroidal momentum, and magnetic moment. The detector acceptance can then be plotted in a plane of constant energy and compared with the relevant orbit class boundaries and fast ion source distributions. Knowledge of expected or interesting mechanisms of loss can further guide selection of the detector orientation. The example of a fast ion loss detector for the National Spherical Torus Experiment-Upgrade (NSTX-U) is considered.
- Type:
- Dataset
- Issue Date:
- January 2017
212. Overview of NSTX Upgrade Initial Results and Modelling Highlights
- Author(s):
- Menard, J.E.; Allain, J.P.; Battaglia, D.J.; Bedoya, F.; Bell, R.E.; Belova, E.; Berkery, J.W.; Boyer, M.D.; Crocker, N.; Diallo, A.; Ebrahimi, F.; Ferrraro, N.; Fredrickson, E.; Frerichs, H.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Heidbrink, W.; Kaita, R.; Kaye, S.M.; Kriete, D.M.; Kubota, S.; LeBlanc, B.P.; Liu, D.; Lunsford, R.; Mueller, D.; Myers, C.E.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Reinke, M.; Ren, Y.; Sabbagh, S.A.; Schmitz, O.; Scotti, F.; Sechrest, Y.; Skinner, C.H.; Smith, D.R.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Yuh, H.; Wang, Z.; Waters, I.; Ahn, J.-W.; Andre, R.; Barchfeld, R.; Beiersdorfer, P.; Bertelli, N.; Bhattacharjee, A.; Boyle, D.; Brennan, D.; Buttery, R.; Capece, A.; Canal, G.; Canik, J.; Chang, C.S.; Darrow, D.; Delgado-Aparicio, L.; Domier, C.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Fonck, R.; Gan, K.; Gates, D.; Goumiri, I.; Gray, T.; Hosea, J.; Humphreys, D.; Jarboe, T.; Jardin, S.; Jaworski, M.A.; Koel, B.; Kolemen, E.; Ku, S.; LaHaye, R.J.; Levinton, F.; Luhmann Jr., N.; Maingi, R.; Maqueda, R.; McKee, G.; Meier, E.; Myra, J.; Perkins, R.; Poli, F.; Rhodes, T.; Riquezes, J.; Rowley, C.; Russell, D.; Schuster, E.; Stratton, B.; Stutman, D.; Taylor, G.; Tritz, K.; Wang, W.; Wirth, B.; Zweben, S.J.
- Abstract:
- The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, H-Mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During 10 run weeks of operation, NSTX-U surpassed NSTX-record pulse-durations and toroidal fields, and high-performance ~1MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n=1 no-wall stability limit and with H-mode confinement multiplier H98y2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven Eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the Disruption Event Characterization and Forecasting (DECAF) code. Lastly, the Materials Analysis and Particle Probe (MAPP) was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.
- Type:
- Dataset
- Issue Date:
- October 2017
213. Plasma measurements of the Fe XVII L-shell emission and blending with F VIII and F IX
- Author(s):
- Beiersdorfer, P.; Lepson, J.K.; Gu, M.F.; Bitter, M.
- Abstract:
- We measured the L-shell emission spectrum of Fe XVII in a low-density, low-gradient magnetically confined laboratory plasma that contains predominantly C, O, Fe, and Ni as trace elements and find excellent agreement with the relative spectral emission obtained in solar and astrophysical observations. However, we obtained spectra that appear to have an usually large 1s^22s^22p^5_{1/2}3d_{3/2} --> 1s^22s^22p^6 Fe XVII resonance transition, commonly labeled 3C, from hot plasmas that also contain F. The wavelength of the Ly-alpha feature of F IX is coincident with the wavelength of the Fe XVII line 3C within one part in 538, and its flux, therefore, enhances the Fe XVII resonance line. Moreover, the resonance and forbidden lines of F VIII are close to the 3s --> 2p transitions in Fe XVII, and may further alter the inferred apparent Fe XVII line ratios, particularly in spectrometers with moderate spectral resolution. The enhanced emission of line 3C, thus, can serve as a new spectral diagnostic for the detection of fluorine in astrophysical plasmas.
- Type:
- Dataset
- Issue Date:
- November 2017
214. Sensitivity of WallDYN material migration modeling to uncertainties in mixed-material surface binding energies
- Author(s):
- Nichols, J.H.; Jaworski, M.A.; Schmid, K.
- Abstract:
- The WallDYN package has recently been applied to a number of tokamaks to self-consistently model the evolution of mixed-material plasma facing surfaces. A key component of the WallDYN model is the concentration-dependent surface sputtering rate, calculated using SDTRIM.SP. This modeled sputtering rate is strongly influenced by the surface binding energies (SBEs) of the constituent materials, which are well known for pure elements but often are poorly constrained for mixed-materials. This work examines the sensitivity of WallDYN surface evolution calculations to different models for mixed-material SBEs, focusing on the carbon/lithium/oxygen/deuterium system present in NSTX. A realistic plasma background is reconstructed from a high density, H-mode NSTX discharge, featuring an attached outer strike point with local density and temperature of 4e20 m^-3 and 4 eV, respectively. It is found that various mixed-material SBE models lead to significant qualitative and quantitative changes in the surface evolution profile at the outer divertor, with the highest leverage parameter being the C-Li binding model. Uncertainties of order 50%, appearing on time scales relevant to tokamak experiments, highlight the importance of choosing an appropriate mixed-material sputtering representation when modeling the surface evolution of plasma facing components. These results are generalized to other fusion-relevant materials with different ranges of SBEs.
- Type:
- Dataset
- Issue Date:
- 2017
215. Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
- Author(s):
- Banerjee, D.; Zhu, P.; Maingi, R.
- Abstract:
- Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff , the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.
- Type:
- Dataset
- Issue Date:
- July 2017
216. Suppression of Alfvén modes on NSTX-U with outboard beam injection
- Author(s):
- Fredrickson, E.D.; Belova, E.V.; Battaglia, D.J.; Bell, R.E.; Crocker, N.A.; Darrow, D.S.; Diallo, A.; Gerhardt, S.P.; Gorelenkov, N.N.; LeBlanc, B.P.; Podesta, M.
- Abstract:
- In this paper we present data from experiments on NSTX-U where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counter-propagating Global Alfvén Eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfvén modes, and developing methods to control them, is important for fusion reactor like the International Tokamak Experimental Reactor (ITER) which are heated by a large population of non-thermal, super-Alfvénic ions consisting of fusion generated alphas and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k⊥ρL. A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.
- Type:
- Dataset
- Issue Date:
- June 2017
217. The Role of Recti ed Currents in Far-Field RF Sheaths and in SOL Losses of HHFW Power on NSTX
- Author(s):
- Perkins, R.J.; Hosea, J.C.; Jaworski, M.A.; Bell, R.E.; Bertelli, N.; Kramer, G.J.; Roquemore, L.; Taylor, G.; Wilson, J.R.
- Abstract:
- Radio-frequency (RF) rectification is an important sheath phenomenon for wave heating of plasma in fusion devices and is proposed to be the mechanism responsible for converting highharmonic fast-wave (HHFW) power in the National Spherical Torus eXperiment (NSTX) into a heat ux to the divertor. RF rectification has two aspects: current rectification and voltage recti- fication, and, while the latter is emphasized in many application, we demonstrate the importance of current rectification in analysis of the NSTX divertor during HHFW heating. When rectified currents are accounted for in first-principle models for the heat ux to the tiles, we predict a sizeable enhancement for the heat ux in the presence of an RF field: for one case studied, the predicted heat ux increases from 0:103 MW=m2 to 0:209 MW=m2. We also demonstrate how this rectification scales with injected HHFW power by tracking probe characteristics during a HHFW power ramp; the rectified current may be clamped at a certain level. This work is important for minimizing SOL losses of HHFW power in NSTX-U but may also have implications for near-field studies of ICRF antennae: ignoring rectified current may lead to underestimated heat uxes and overestimated rectified voltages.
- Type:
- Dataset
- Issue Date:
- May 2017
218. The Structured `Low Temperature' Phase of the Retinal Population Code
- Author(s):
- Ioffe, Mark Lev; Berry II, Michael J.
- Abstract:
- Recent advances in experimental techniques have allowed the simultaneous recordings of populations of hundreds of neurons, fostering a debate about the nature of the collective structure of population neural activity. Much of this debate has focused on the empirical findings of a phase transition in the parameter space of maximum entropy models describing the measured neural probability distributions, interpreting this phase transition to indicate a critical tuning of the neural code. Here, we instead focus on the possibility that this is a first-order phase transition which provides evidence that the real neural population is in a `structured', collective state. We show that this collective state is robust to changes in stimulus ensemble and adaptive state. We find that the pattern of pairwise correlations between neurons has a strength that is well within the strongly correlated regime and does not require fine tuning, suggesting that this state is generic for populations of 100+ neurons. We find a clear correspondence between the emergence of a phase transition, and the emergence of attractor-like structure in the inferred energy landscape. A collective state in the neural population, in which neural activity patterns naturally form clusters, provides a consistent interpretation for our results.
- Type:
- Dataset
- Issue Date:
- 2017
219. Two-dimensional turbulence cross-correlation functions in the edge of NSTX
- Author(s):
- Zweben, S.J.; Stotler, D.P.; Scotti, F.; Myra, J.R.
- Abstract:
- The 2-D radial vs. poloidal cross-correlation functions of edge plasma turbulence were measured near the outer midplane using the gas puff imaging (GPI) diagnostic on NSTX. These correlation functions were evaluated at radii r= 0 cm, ±3 cm, and ±6 cm from the separatrix and poloidal locations p=0 cm and ±7.5 cm from the GPI poloidal center line for 20 different shots. The ellipticity ε and tilt angle φ of the positive cross- correlation regions, and the minimum negative cross-correlation “cmin” and total negative over positive values “neg/pos” were evaluated for each of these cases. The average results over this data set were ε=2.2±0.9, φ=87±34o (i.e. poloidally oriented), cmin= -0.30±0.15, and neg/pos=0.25±0.24. Thus there was significant variation in these correlation results within this database, with dependences on the location within the image, the magnetic geometry, and the plasma parameters. Possible causes for this variation are discussed, including the misalignment of the GPI view with the local B field line, the magnetic shear of field lines in the edge, the poloidal flow shear of the turbulence, blob-hole correlations, and the neutral density ‘shadowing’ effect in GPI.
- Type:
- Dataset
- Issue Date:
- September 2017
220. Accessing Real-Life Episodic Information from Minutes versus Hours Earlier Modulates Hippocampal and High-Order Cortical Dynamics
- Author(s):
- Chen, Janice; Honey, Christopher; Simony, Erez; Arcaro, Michael; Norman, Kenneth; Hasson, Uri
- Abstract:
- It is well known that formation of new episodic memories depends on hippocampus, but in real-life settings (e.g., conversation), hippocampal amnesics can utilize information from several minutes earlier. What neural systems outside hippocampus might support this minutes-long retention? In this study, subjects viewed an audiovisual movie continuously for 25 min; another group viewed the movie in 2 parts separated by a 1-day delay. Understanding Part 2 depended on retrieving information from Part 1, and thus hippocampus was required in the day-delay condition. But is hippocampus equally recruited to access the same information from minutes earlier? We show that accessing memories from a few minutes prior elicited less interaction between hippocampus and default mode network (DMN) cortical regions than accessing day-old memories of identical events, suggesting that recent information was available with less reliance on hippocampal retrieval. Moreover, the 2 groups evinced reliable but distinct DMN activity timecourses, reflecting differences in information carried in these regions when Part 1 was recent versus distant. The timecourses converged after 4 min, suggesting a time frame over which the continuous-viewing group may have relied less on hippocampal retrieval. We propose that cortical default mode regions can intrinsically retain real-life episodic information for several minutes.
- Type:
- Dataset
- Issue Date:
- 3 August 2015
221. Blob Structure and Motion in the Edge and SOL of NSTX
- Author(s):
- Zweben, S.J.; J.R. Myra; W.M. Davis; D.A. D'Ippolito; T.K. Gray; S.M. Kaye; B.P. LeBlanc; R.J. Maqueda; D.A. Russell; D.P. Stotler
- Abstract:
- Blob analysis dataset
- Type:
- Dataset
- Issue Date:
- January 2016
222. Collisional dependence of Alfven mode saturation in tokamaks
- Author(s):
- Zhou, M.; White, R.
- Abstract:
- Saturation of \alfven modes driven unstable by a distribution of high energy particles as a function of collisionality is investigated with a guiding center code, using numerical eigenfunctions produced by linear theory and numerical high energy particle distributions. The most important resonance is found and it is shown that when the resonance domain is bounded, not allowing particles to collisionlessly escape, the saturation amplitude is given by the balance of the resonance mixing time with the time for nearby particles to collisionally diffuse across the resonance width. Saturation amplitudes are in agreement with theoretical predictions as long as the mode amplitude is not so large that it produces stochastic loss from the resonance domain.
- Type:
- Dataset
- Issue Date:
- December 2016
223. Compact and multi-view solid state neutral particle analyzer arrays on National Spherical Torus Experiment-Upgrade
- Author(s):
- Liu, D.; Heidbrink, W.W.; Tritz, K.; Fredrickson, E.D.; Hao, G.Z.; Zhu, Y.B.
- Abstract:
- A compact and multi-view Solid State Neutral Particle Analyzer (SSNPA) diagnostic based on silicon photodiode arrays has been successfully tested on the National Spherical Torus Experiment-Upgrade (NSTX-U). The SSNPA diagnostic provides spatially, temporally, and pitch-angle resolved measurements of fast-ion distribution by detecting fast neutral flux resulting from charge exchange (CX) reactions. The system consists of three 16-channel subsystems: t-SSNPA viewing the plasma mid-radius and neutral beam (NB) line #2 tangentially, r-SSNPA viewing the plasma core and NB line #1 radially and p-SSNPA with no intersection with any NB lines. Due to the setup geometry, the active CX signals of t-SSNPA and r-SSNPA are mainly sensitive to passing and trapped particles respectively. In addition, both t-SSNPA and r-SSNPA utilize three vertically stacked arrays with different filter thickness to obtain coarse energy information. The experimental data show that all channels are operational. The signal to noise ratio is typically larger than 10 and the main noise is x-ray induced signal. The active and passive CX signals are clearly observed on t-SSNPA and r-SSNPA during NB modulation. The SSNPA data also indicate significant losses of passing particles during sawteeth, while trapped particles are weakly affected. Fluctuations up to 120 kHz, have been observed on SSNPA, and they are strongly correlated with magnetohydrodynamics (MHD) instabilities.
- Type:
- Dataset
- Issue Date:
- November 2016
224. Complementary learning systems within the hippocampus: A neural network modeling approach to reconciling episodic memory with statistical learning
- Author(s):
- Schapiro, Anna; Turk-Browne, Nicholas; Botvinick, Matthew; Norman, Kenneth
- Type:
- interactive resource
- Issue Date:
- 2016
225. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements
- Author(s):
- Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.
- Abstract:
- Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He atoms which will be produced by D-T fusion. To study He exhaust, Penning gauges were used to measure total neutral pressure assisted by spectroscopy to resolve the D and He partial pressures. In this contribution, initial results are shown from developing this technique into a miniaturized configuration for direct in-situ measurements in the divertor of fusion devices. The configuration is based off a gauge originally designed for the National Spherical Tokamak Experiment-Upgrade (NSTX-U). The goal of this new miniaturized design it to reduce the space required by the gauge on the device and use of the inherent magnetic field of the machine rather than permanent magnets inside the gauge, enabling it to be adapted into a system that can be extended directly into the divertor region. The feasibility test of the method for NSTX-U and the Wendelstein 7-X (W7-X) stellarator are surveyed. For W7-X, a commercial Penning Gauge has been installed on an outboard vacuum flange as a generic feasibility test in the neutral gas environment of a stellarator. At an integration time of 25s, helium lines can be seen down to 10^-5 mbar and H-alpha lines down to 10^-6 mbar. Successful measurement of the total as well as the fractional neutral pressures of He and H has been shown. A first prototype of the miniature Penning gauge has been tested in Madison and shows a near linear power law scaling between current and pressure: I = C*P^n with n = 1.0 - 1.2. Pressure measurements were achieved starting at 10^-3 mbar and down to 10^-6 mbar. A modular gauge is being assembled, which allows easy interchangeability of the anode to test new anode geometries, in order to improve optical access and increase spectroscopic sensitivity. This shall enable an increase of the time resolution of the spectroscopically assisted fractional neutral pressure measurements to up to 1kHz.
- Type:
- Dataset
- Issue Date:
- November 2016
226. Diagnostics for molybdenum and tungsten erosion and transport in NSTX-U
- Author(s):
- Scotti, F.; Soukhanovskii, V.; Weller, M.
- Abstract:
- A comprehensive set of spectroscopic diagnostics is planned in the National Spherical Torus Experi- ment Upgrade to connect measurements of molybdenum and tungsten divertor sources to scrape-o↵ layer (SOL) and core impurity transport, supporting the installation of high-Z plasma facing compo- nents which is scheduled to begin with a row of molybdenum tiles. Imaging with narrow-bandpass interference filters and high-resolution spectroscopy will be coupled to estimate divertor impurity influxes. Vacuum ultraviolet and extreme ultraviolet spectrometers will allow connecting high-Z sources to SOL transport and core impurity content. The high-Z diagnostics suite complements the existing measurements for low-Z impurities (carbon and lithium), critical for the characterization of sputtering of high-Z materials.
- Type:
- Dataset
- Issue Date:
- November 2016
227. Dynamic reconfiguration of the default mode network during narrative comprehension
- Author(s):
- Simony, Erez; Honey, Christopher; Chen, Janice; Lositsky, Olga; Yeshurun, Yaara; Wiesel, Ami; Hasson, Uri
- Abstract:
- Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
- Type:
- Dataset
- Issue Date:
- 18 July 2016
228. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes
- Author(s):
- Maingi, R.; Canik, J.M.; Bell, R.E.; Boyle, D.P.; Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P.; Sabbagh, S.A.; Scotti, F.; Soukhanovskii, V.A.
- Abstract:
- A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (�dose�) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.
- Type:
- Dataset
- Issue Date:
- August 2016
229. Exploration of magnetic perturbation effects on advanced divertor configurations in NSTX-U
- Author(s):
- Frerichs, H.; Waters, I.; Schmitz, O.; Canal, G.P.; Evans, T.E.; Feng, Y.; Soukhanovskii, V.A.
- Abstract:
- The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code. Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.
- Type:
- Dataset
- Issue Date:
- June 2016
230. Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U
- Author(s):
- Scott, E.R.; Barchfeld, R.; Riemenschneider, P.; Domier, C.W.; Muscatello, C.M.; Sohrabi, M.; Kaita, R.; Ren, Y.; Luhmann Jr., N.C.
- Abstract:
- The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment-Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.
- Type:
- Dataset
- Issue Date:
- November 2016
231. Fusion Nuclear Science Facilities and Pilot Plants Based on the Spherical Tokamak
- Author(s):
- Menard, J.E.; Brown, T.; El-Guebaly, L.; Boyer, M.; Canik, J.; Colling, B.; Raman, R.; Wang, Z.; Zhai, Y.; Buxton, P.; Covele, B.; D'Angelo, C.; Davis, A.; Gerhardt, S.; Gryaznevich, M.; Harb, M.; Hender, T.C.; Kaye, S.; Kingham, D.; Kotschenreuther, M.; Mahajan, S.; Maingi, R.; Marriott, E.; Meier, E.T.; Mynsberge, L.; Neumeyer, C.; Ono, M.; Park, J.-K.; Sabbagh, S.A.; Soukhanovskii, V.; Valanju, P.; Woolley, R.
- Abstract:
- A Fusion Nuclear Science Facility (FNSF) could play an important role in the development of fusion energy by providing the nuclear environment needed to develop fusion materials and components. The spherical torus/tokamak (ST) is a leading candidate for an FNSF due to its potentially high neutron wall loading and modular configuration. A key consideration for the choice of FNSF configuration is the range of achievable missions as a function of device size. Possible missions include: providing high neutron wall loading and fluence, demonstrating tritium self-sufficiency, and demonstrating electrical self-sufficiency. All of these missions must also be compatible with a viable divertor, first-wall, and blanket solution. ST-FNSF configurations have been developed simultaneously incorporating for the first time: (1) a blanket system capable of tritium breeding ratio TBR approximately 1, (2) a poloidal field coil set supporting high elongation and triangularity for a range of internal inductance and normalized beta values consistent with NSTX/NSTX-U previous/planned operation, (3) a long-legged divertor analogous to the MAST-U divertor which substantially reduces projected peak divertor heat-flux and has all outboard poloidal field coils outside the vacuum chamber and superconducting to reduce power consumption, and (4) a vertical maintenance scheme in which blanket structures and the centerstack can be removed independently. Progress in these ST-FNSF missions vs. configuration studies including dependence on plasma major radius R0 for a range 1m to 2.2m are described. In particular, it is found the threshold major radius for TBR = 1 is R0 greater than or equal to 1.7m, and a smaller R0=1m ST device has TBR approximately 0.9 which is below unity but substantially reduces T consumption relative to not breeding. Calculations of neutral beam heating and current drive for non-inductive ramp-up and sustainment are described. An A=2, R0=3m device incorporating high-temperature superconductor toroidal field coil magnets capable of high neutron fluence and both tritium and electrical self-sufficiency is also presented following systematic aspect ratio studies.
- Type:
- Dataset
- Issue Date:
- October 2016
232. Hydrogen Retention in Lithium on Metallic Walls from “In Vacuo” Analysis in LTX and Implications for High-Z Plasma-Facing Components in NSTX-U
- Author(s):
- Kaita, R.; Lucia, M.; Allain, J. P.; Bedoya, F.; Capece, A.; Jaworski, M.; Koel, B. E.; Majeski, R.; Roszell, J.; Schmitt, J.; Scotti, F.; Skinner, C. H.; Soukhanovskii, V.
- Abstract:
- The application of lithium to plasma-facing components (PFCs) has long been used as a technique for wall conditioning in magnetic confinement devices to improve plasma performance. Determining the characteristics of PFCs at the time of exposure to the plasma, however, is difficult because they can only be analyzed after venting the vacuum vessel and removing them at the end of an operational period. The Materials Analysis and Particle Probe (MAPP) addresses this problem by enabling PFC samples to be exposed to plasmas, and then withdrawn into an analysis chamber without breaking vacuum. The MAPP system was used to introduce samples that matched the metallic PFCs of the Lithium Tokamak Experiment (LTX). Lithium that was subsequently evaporated onto the walls also covered the MAPP samples, which were then subject to LTX discharges. In vacuo extraction and analysis of the samples indicated that lithium oxide formed on the PFCs, but improved plasma performance persisted in LTX. The reduced recycling this suggests is consistent with separate surface science experiments that demonstrated deuterium retention in the presence of lithium oxide films. Since oxygen decreases the thermal stability of the deuterium in the film, the release of deuterium was observed below the lithium deuteride dissociation temperature. This may explain what occurred when lithium was applied to the surface of the NSTX Liquid Lithium Divertor (LLD). The LLD had segments with individual heaters, and the deuterium-alpha emission was clearly lower in the cooler regions. The plan for NSTX-U is to replace the graphite tiles with high-Z PFCs, and apply lithium to their surfaces with lithium evaporation. Experiments with lithium coatings on such PFCs suggest that deuterium could still be retained if lithium compounds form, but limiting their surface temperatures may be necessary.
- Type:
- Dataset
- Issue Date:
- 2016
233. Initial operation of the NSTX-Upgrade real-time velocity diagnostic
- Author(s):
- Podesta, M; Bell, R.E.
- Abstract:
- A real-time velocity (RTV) diagnostic based on active charge-exchange recombination spectroscopy is now operational on the National Spherical Torus Experiment-Upgrade (NSTX-U) spherical torus (Menard et al 2012 Nucl. Fusion 52 083015). The system has been designed to supply plasma velocity data in real time to the NSTX-U plasma control system, as required for the implementation of toroidal rotation control. Measurements are available from four radii at a maximum sampling frequency of 5 kHz. Post-discharge analysis of RTV data provides additional information on ion temperature, toroidal velocity and density of carbon impurities. Examples of physics studies enabled by RTV measurements from initial operations of NSTX-U are discussed.
- Type:
- Dataset
- Issue Date:
- November 2016
234. Laboratory study of low-beta forces in arched, line-tied magnetic flux ropes
- Author(s):
- Myers, Clayton; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Jara-Almonte, Jonathan; Fox, William
- Abstract:
- The loss-of-equilibrium is a solar eruption mechanism whereby a sudden breakdown of the magnetohydrodynamic force balance in the Sun's corona ejects a massive burst of particles and energy into the heliosphere. Predicting a loss-of-equilibrium, which has more recently been formulated as the torus instability, relies on a detailed understanding of the various forces that hold the pre-eruption magnetic flux rope in equilibrium. Traditionally, idealized analytical force expressions are used to derive simplified eruption criteria that can be compared to solar observations and modeling. What is missing, however, is a validation that these idealized analytical force expressions can be applied to the line-tied, low-aspect-ratio conditions of the corona. In this paper, we address this shortcoming by using a laboratory experiment to study the forces that act on long-lived, arched, line-tied magnetic flux ropes. Three key force terms are evaluated over a wide range of experimental conditions: (1) the upward hoop force; (2) the downward strapping force; and (3) the downward toroidal field tension force. First, the laboratory force measurements show that, on average, the three aforementioned force terms cancel to produce a balanced line-tied equilibrium. This finding validates the laboratory force measurement techniques developed here, which were recently used to identify a dynamic toroidal field tension force that can prevent flux rope eruptions [Myers et al., Nature 528, 526 (2015)]. The verification of magnetic force balance also confirms the low-beta assumption that the plasma thermal pressure is negligible in these experiments. Next, the measured force terms are directly compared to their corresponding analytical expressions. While the measured and analytical forces are found to be well correlated, the low-aspect-ratio, line-tied conditions in the experiment are found to both reduce the measured hoop force and increase the measured tension force with respect to analytical expectations. These two co-directed effects combine to generate laboratory flux rope equilibria at lower altitudes than are predicted analytically. Such considerations are expected to modify the loss-of-equilibrium eruption criteria for analogous flux ropes in the solar corona.
- Type:
- Dataset
- Issue Date:
- November 2016
235. Large-volume flux closure during plasmoid-mediated reconnection in coaxial helicity injection
- Author(s):
- Ebrahimi, F.; Raman, R.
- Abstract:
- A large-volume flux closure during transient coaxial helicity injection (CHI) in NSTX-U is demonstrated through resistive magnetohydrodynamics (MHD) simulations. Several major improvements, including the improved positioning of the divertor poloidal field coils, are projected to improve the CHI start-up phase in NSTX-U. Simulations in the NSTX-U configuration with constant in time coil currents show that with strong flux shaping the injected open field lines (injector flux) rapidly reconnect and form large volume of closed flux surfaces. This is achieved by driving parallel current in the injector flux coil and oppositely directed currents in the flux shaping coils to form a narrow injector flux footprint and push the injector flux into the vessel. As the helicity and plasma are injected into the device, the oppositely directed field lines in the injector region are forced to reconnect through a local Sweet–Parker type reconnection, or to spontaneously reconnect when the elongated current sheet becomes MHD unstable to form plasmoids. In these simulations for the first time, it is found that the closed flux is over 70% of the initial injector flux used to initiate the discharge. These results could work well for the application of transient CHI in devices that employ super conducting coils to generate and sustain the plasma equilibrium.
- Type:
- Dataset
- Issue Date:
- April 2016
236. Linear gyrokinetic simulations of microinstabilities within the pedestal region of H-mode NSTX discharges in a highly shaped geometry
- Author(s):
- Coury, M.; Guttenfelder, W.; Mikkelsen, D.; Canik, J.; Canal, G.; Diallo, A.; Kaye, S.; Kramer, G.; Maingi, R.
- Abstract:
- Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lihiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with unstable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for eta(e,exp)~2.2, with higher growth rates for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, reflecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.
- Type:
- Dataset
- Issue Date:
- June 2016
237. Massive Gas Injection Valve Development for NSTX-U
- Author(s):
- Raman, R.; Plunkett, G.J.; Way, W.-S.
- Abstract:
- NSTX-U research will offer new insight by studying gas assimilation efficiencies for MGI injection from different poloidal locations using identical gas injection systems. In support of this activity, an electromagnetic MGI valve has been built and tested. The valve operates by repelling two conductive disks due to eddy currents induced on them by a rapidly changing magnetic field created by a pancake disk solenoid positioned beneath the circular disk attached to a piston. The current is driven in opposite directions in the two solenoids, which creates a cancelling torque when the valve is operated in an ambient magnetic field, as would be required in a tokamak installation. The valve does not use ferromagnetic materials. Results from the operation of the valve, including tests conducted in 1 T external magnetic fields, are described. The pressure rise in the test chamber is measured directly using a fast time response baratron gauge. At a plenum pressure of just 1.38 MPa (~200 psig), the valve injects 27 Pa.m^3 (~200 Torr.L) of nitrogen with a pressure rise time of 3 ms.
- Type:
- Dataset
- Issue Date:
- May 2016
238. Mitigation of Alfven activity by 3D magnetic perturbations on NSTX
- Author(s):
- Kramer, G.J; Bortolon, A.; Ferraro, N.M.; Spong, D.A.; Crocker, N.A.; Darrow, D.S.; Fredrickson, E.D.; Kubota, S.; Park, J.-K.; Podesta, M.; Heidbrink, W.W.
- Abstract:
- Observations on the National Spherical Torus eXperiment (NSTX) indicate that externally applied non-axisymmetric magnetic perturbations (MP) can reduce the amplitude of Toroidal Alfven Eigenmodes (TAE) and Global Alfven Eigenmodes (GAE) in response to pulsed n=3 non-resonant fields. From full-orbit following Monte Carlo simulations with the 1- and 2-fluid resistive MHD plasma response to the magnetic perturbation included, it was found that in response to MP pulses the fast-ion losses increased and the fast-ion drive for the GAEs was reduced. The MP did not affect the fast-ion drive for the TAEs significantly but the Alfven continuum at the plasma edge was found to be altered due to the toroidal symmetry breaking which leads to coupling of different toroidal harmonics. The TAE gap was reduced at the edge creating enhanced continuum damping of the global TAEs, which is consistent with the observations. The results suggest that optimized non-axisymmetric MP might be exploited to control and mitigate Alfven instabilities by tailoring the fast-ion distribution function and/or continuum structure.
- Type:
- Dataset
- Issue Date:
- August 2016
239. MultiChannel Pattern Analysis: Correlation-Based Decoding with fNIRS
- Author(s):
- Emberson, Lauren; Zinszer, Benjamin
- Type:
- Software
- Issue Date:
- 7 October 2016
240. Natural Movie - Grass Stalks
- Author(s):
- Ioffe, ML; Palmer SEP; Berry MJ II.
- Type:
- moving image
- Issue Date:
- 2016
241. Neural pattern change during encoding of a narrative predicts retrospective duration estimates
- Author(s):
- Lositsky, Olga; Chen, Janice; Toker, Daniel; Honey, Christopher; Hasson, Uri; Norman, Kenneth
- Abstract:
- What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people's subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analysis found that the neural pattern distance between two clips at encoding was correlated with duration estimates in the right entorhinal cortex and right pars orbitalis. Moreover, a whole-brain searchlight analysis revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions.
- Type:
- Dataset
- Issue Date:
- 12 March 2016
242. Nonlinear fishbone dynamics in spherical tokamaks
- Author(s):
- Wang, F.; Fu, G.Y.; Shen, W.
- Abstract:
- Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher qmin (>1.5) values, qmin being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non- resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.
- Type:
- Dataset
- Issue Date:
- January 2017
243. Observation of quasi-coherent edge fluctuations in Ohmic plasmas on NSTX
- Author(s):
- Banerjee, S.; A. Diallo; S.J. Zweben
- Abstract:
- A quasi-coherent mode with frequency f = 40 kHz is observed in Ohmic plasmas in NSTX with the gas puff imaging diagnostic (GPI). This mode is located predominantly just inside the separatrix, with a maximum fluctuation amplitude similar to that of the broadband turbulence in the same frequency range. The quasi-coherent mode has a poloidal wavelength 16 cm and a poloidal velocity 49 km/s in the electron diamagnetic direction, which are similar to the characteristics expected from a linear drift-wave like mode in the edge.
- Type:
- Dataset
- Issue Date:
- April 2016
244. Parallel electron force balance and the L-H transition
- Author(s):
- Stoltzfus-Dueck, T.
- Abstract:
- In one popular description of the L-H transition, energy transfer to the mean flows directly depletes turbulence fluctuation energy, resulting in suppression of the turbulence and a corresponding transport bifurcation. However, electron parallel force balance couples nonzonal velocity fluctuations with electron pressure fluctuations on rapid timescales, comparable with the electron transit time. For this reason, energy in the nonzonal velocity stays in a fairly fixed ratio to the free energy in electron density fluctuations, at least for frequency scales much slower than electron transit. In order for direct depletion of the energy in turbulent fluctuations to cause the L-H transition, energy transfer via Reynolds stress must therefore drain enough energy to significantly reduce the sum of the free energy in nonzonal velocities and electron pressure fluctuations. At low k, the electron thermal free energy is much larger than the energy in nonzonal velocities, posing a stark challenge for this model of the L-H transition.
- Type:
- Dataset
- Issue Date:
- May 2016
245. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment
- Author(s):
- Carlsson, J.; Wilson, J.R.; Hosea, J.; Greenough, N.; Perkins, R.
- Abstract:
- Third-order spectral analysis, in particular the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.
- Type:
- Dataset
- Issue Date:
- June 2016
246. Phase space effects on fast ion distribution function modeling in tokamaks
- Author(s):
- Podesta, M.; M. Gorelenkova; E.D. Fredrickson; N.N. Gorelenkov
- Abstract:
- Integrated simulations of tokamak discharges typically rely on classical physics to model energetic particle (EP) dynamics. However, there are numerous cases in which energetic particles can suffer additional transport that is not classical in nature. Examples include transport by applied 3D magnetic perturbations and, more notably, by plasma instabilities. Focusing on the effects of instabilities, ad-hoc models can empirically reproduce increased transport, but the choice of transport coefficients is usually somehow arbitrary. New approaches based on physics-based reduced models are being developed to address those issues in a simplified way, while retaining a more correct treatment of resonant wave-particle interactions. The kick model implemented in the tokamak transport code TRANSP is an example of such reduced models. It includes modifications of the EP distribution by instabilities in real and velocity space, retaining correlations between transport in energy and space typical of resonant EP transport. The relevance of EP phase space modifications by instabilities is first discussed in terms of predicted fast ion distribution. Results are compared with those from a simple, ad-hoc diffusive model. It is then shown that the phase-space resolved model can also provide additional insight into important issues such as internal consistency of the simulations and mode stability through the analysis of the power exchanged between energetic particles and the instabilities.
- Type:
- Dataset
- Issue Date:
- April 2016
247. Quasi-linear gyrokinetic predictions of the Coriolis momentum pinch in NSTX
- Author(s):
- Guttenfelder W.; S.M. Kaye; Y. Ren; W. Solomon; R.E. Bell; J. Candy; S.P. Gerhardt; B.P. LeBlanc; H. Yuh
- Abstract:
- This paper presents quasi-linear gyrokinetic predictions of the Coriolis momentum pinch for low aspect-ratio NSTX H-modes where previous experimental measurements were focused. Local, linear calculations predict that in the region of interest (just outside the mid-radius) of these relatively high-beta plasmas, profiles are most unstable to microtearing modes that are only effective in transporting electron energy. However, sub-dominant electromagnetic and electrostatic ballooning modes are also unstable, which are effective at transporting energy, particles and momentum. The quasi-linear prediction of transport from these weaker ballooning modes, assuming they contribute transport in addition to that from microtearing modes in a nonlinear turbulent state, leads to a very small or outward convection of momentum, inconsistent with the experimentally measured inward pinch, and opposite to predictions in conventional aspect ratio tokamaks. Additional predictions of a low beta L-mode plasma, unstable to more traditional electrostatic ion temperature gradient-trapped electron mode instability, show that the Coriolis pinch is inward but remains relatively weak and insensitive to many parameter variations. The weak or outward pinch predicted in NSTX plasmas appears to be at least partially correlated to changes in the parallel mode structure that occur at finite beta and low aspect ratio, as discussed in previous theories. The only conditions identified where a stronger inward pinch is predicted occur either in the purely electrostatic limit or if the aspect ratio is increased. As the Coriolis pinch cannot explain the measured momentum pinch, additional theoretical momentum transport mechanisms are discussed that may be potentially important.
- Type:
- Dataset
- Issue Date:
- April 2016
248. Quasi-static and dynamic magnetic tension forces in arched, line-tied magnetic flux ropes
- Author(s):
- Myers, Clayton; Yamada, Masaaki; Ji, Hantao; Yoo, Jongsoo; Jara-Almonte, Jonathan; Fox, William
- Abstract:
- Solar eruptions are often driven by magnetohydrodynamic instabilities such as the torus and kink instabilities that act on line-tied magnetic flux ropes. Recent laboratory experiments designed to study these eruptive instabilities have demonstrated the key role of both dynamic (Myers et al 2015 Nature 528, 526) and quasi-static (Myers et al 2016 Phys. Plasmas, in press) magnetic tension forces in contributing to the equilibrium and stability of line-tied magnetic flux ropes. In this paper, we synthesize these laboratory results and explore the relationship between the dynamic and quasi-static tension forces. While the quasi-static tension force is found to contribute to the flux rope equilibrium in a number of regimes, the dynamic tension force is substantial mostly in the so-called failed torus regime where magnetic self-organization events prevent the flux rope from erupting.
- Type:
- Dataset
- Issue Date:
- December 2016
249. Real-time Radiative Divertor Feedback Control Development for the NSTX-U Tokamak using a Vacuum Ultraviolet Spectrometer
- Author(s):
- Soukhanovskii, V.A.; Kaita, R.; Stratton, B.
- Abstract:
- A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature Te estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the delta n=0;1 line intensity ratios of carbon, nitrogen or neon ions lines in the spectral range 300 to 1600 A. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time Te-dependent signal within a characteristic divertor detachment equilibration time of ~ 10-15 ms is expected.
- Type:
- Dataset
- Issue Date:
- November 2016
250. Remote-sensing gas measurements with coherent Rayleigh-Brillouin scattering
- Author(s):
- Gerakis, A.; Shneider, M. N.; Stratton, B. C.
- Abstract:
- We measure the coherent Rayleigh-Brillouin scattering (CRBS) signal integral as a function of the recorded gas pressure in He, Co2, SF6, and air, and we confirm the already established quadratic dependence of the signal on the gas density. We propose the use of CRBS as an effective diagnostic for the remote measurement of gas’ density (pressure) and temperature, as well as polarizability, for gases of known composition.
- Type:
- Dataset
- Issue Date:
- 2016