Number of results to display per page
Search Results
42. CrvA and CrvB form a curvature-inducing module sufficient to induce cell shape complexity in Gram-negative bacteria
- Author(s):
- Martin, Nicholas R; Blackman, Edith; Bratton, Benjamin P; Chase, Katelyn J; Bartlett, Thomas M; Gitai, Zemer
- Abstract:
- Bacterial species have diverse cell shapes that enable motility, colonization, and virulence. The cell wall defines bacterial shape and is primarily built by two cytoskeleton-guided synthesis machines, the elongasome and the divisome. However, the mechanisms producing complex shapes, like the curved-rod shape of Vibrio cholerae, are incompletely defined. Previous studies have reported that species-specific regulation of cytoskeleton-guided machines enables formation of complex bacterial shapes such as cell curvature and cellular appendages. In contrast, we report that CrvA and CrvB are sufficient to induce complex cell shape autonomously of the cytoskeleton in V. cholerae. The autonomy of the CrvAB module also enables it to induce curvature in the Gram-negative species Escherichia coli, Pseudomonas aeruginosa, Caulobacter crescentus, and Agrobacterium tumefaciens. Using inducible gene expression, quantitative microscopy, and biochemistry we show that CrvA and CrvB circumvent the need for patterning via cytoskeletal elements by regulating each other to form an asymmetrically-localized, periplasmic structure that directly binds to the cell wall. The assembly and disassembly of this periplasmic structure enables dynamic changes in cell shape. Bioinformatics indicate that CrvA and CrvB may have diverged from a single ancestral hybrid protein. Using fusion experiments in V. cholerae, we find that a synthetic CrvA/B hybrid protein is sufficient to induce curvature on its own, but that expression of two distinct proteins, CrvA and CrvB, promotes more rapid curvature induction. We conclude that morphological complexity can arise independently of cell shape specification by the core cytoskeleton-guided synthesis machines.
- Type:
- Dataset
- Issue Date:
- 2021
43. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
- Author(s):
- Boyer, M.; Battaglia, D.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C.; Sabbagh, S.; Scotti, F.; Vail, P.
- Abstract:
- The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U Control System (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
- Type:
- Dataset
- Issue Date:
- March 2018
44. Enhanced Pedestal H-mode at low edge ion collisionality on NSTX
- Author(s):
- Battaglia, D.J.; Guttenfelder, W.; Bell, R.E.; Diallo, A.; Ferraro, N.;, Fredrickson, E.; Gerhardt, S.P.; Kaye, S.M.; Maingi, R.; Smith, D.R.
- Abstract:
- The Enhanced Pedestal (EP) H-mode regime is an attractive wide-pedestal ELM-free high-betap scenario for NSTX-U and next-step devices as it achieves enhanced energy confinement (H98y,2 > 1.5), large normalized pressure (betaN > 5) and significant bootstrap fraction (f_BS > 0.6) at I_p/B_T = 2 MA/T. This regime is realized when the edge ion collisionality becomes sufficiently small that a positive feedback interaction occurs between a reduction in the ion neoclassical energy transport and an increase in the particle transport from pressure-driven edge instabilities. EP H-mode was most often observed as a transition following a large ELM in conditions with low edge neutral recycling. It is hypothesized that the onset of pressure-driven instabilities prior to the full recovery of the neutral density leads to a temporary period with elevated ion temperature gradient that triggers the transition to EP H-mode. Linear CGYRO and M3D-C1 calculations are compared to beam emission spectroscopy (BES) and magnetic spectroscopy in order to describe the evolution of the edge particle transport mechanisms during the ELM recovery and the saturated EP H-mode state. The observations are consistent with the hypothesis that the onset of pressure-driven edge instabilities, such as the KBM and kink-peeling, can be responsible for the increased particle transport in EP H-mode.
- Type:
- Dataset
- Issue Date:
- June 2020
45. Kinetic neoclassical calculations of impurity radiation profiles
- Author(s):
- Stotler, D.P.; Battaglia, D.J.; Hager, R.; Kim, K.; Koskela, T.; Park, G.; Reinke, M.L.
- Abstract:
- Modifications of the drift-kinetic transport code XGC0 to include the transport, ionization, and recombination of individual charge states, as well as the associated radiation, are described. The code is first applied to a simulation of an NSTX H-mode discharge with carbon impurity to demonstrate the approach to coronal equilibrium. The effects of neoclassical phenomena on the radiated power profile are examined sequentially through the activation of individual physics modules in the code. Orbit squeezing and the neoclassical inward pinch result in increased radiation for temperatures above a few hundred eV and changes to the ratios of charge state emissions at a given electron temperature. Analogous simulations with a neon impurity yield qualitatively similar results.
- Type:
- Dataset
- Issue Date:
- 2017
46. Reduced Model for Direct Induction Startup Scenario Development on MAST-U and NSTX-U
- Author(s):
- Battaglia, D.J.; Thornton, A.J.; Gerhardt, S.P.; Kirk, A.; Kogan, L; Menard, J.E.
- Abstract:
- A reduced semi-empirical model using time-dependent axisymmetric vacuum field calculations is used to develop the prefill and feed-forward coil current targets required for reliable direct induction (DI) startup on the new MA-class spherical tokamaks, MAST-U and NSTX-U. The calculations are constrained by operational limits unique to each device, such as the geometry of the conductive elements and active coils, power supply specifications and coil heating and stress limits. The calculations are also constrained by semi-empirical models for sufficient breakdown, current drive, equilibrium and stability of the plasma developed from a shared database. A large database of DI startup on NSTX and NSTX-U is leveraged to quantify the requirements for achieving a reliable breakdown (Ip ~ 20 kA). It is observed that without pre-ionization, STs access the large E/P regime at modest loop voltage (Vloop) where the electrons in the weakly ionized plasma are continually accelerating along the open field lines. This ensures a rapid (order millisecond) breakdown of the neutral gas, even without pre-ionization or high-quality field nulls. The timescale of the initial increase in Ip on NSTX is reproduced in the reduced model provided a mechanism for impeding the applied electric field is included. Most discharges that fail in the startup phase are due to an inconsistency in the evolution of the plasma current (Ip) and equilibrium field or loss of vertical stability during the burn-through phase. The requirements for the self-consistent evolution of the fields in the weakly and full-ionized plasma states are derived from demonstrated DI startup on NSTX, NSTX-U and MAST. The predictive calculations completed for MAST-U and NSTX-U illustrate that the maximum Ip ramp rate (dIp/dt) in the early startup phase is limited by the voltage limits on the poloidal field coils on MAST-U and passive vertical stability on NSTX-U.
- Type:
- Dataset
- Issue Date:
- August 2019
47. Scenario Development During Commissioning Operations on the National Spherical Torus Experiment Upgrade
- Author(s):
- Battaglia, D.J.; Boyer, M.D.; Gerhardt, S.; Mueller, D.; Myers, C.E.; Guttenfelder, W.; Menard, J.E.; Sabbagh, S.A.; Scotti, F.; Bedoya, F.; Bell, R.E.; Berkery, J.W.; Diallo, A.; Ferraro, N.; Jaworski, M.A.; Kaye, S.M.; LeBlanc, B.P.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Soukhanovskii, V.A.
- Abstract:
- The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (B_T0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (beta_N/beta_N-nowall > 1) compared to NSTX discharges for Ip < 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (kappa > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.
- Type:
- Dataset
- Issue Date:
- April 2018
48. Suppression of Alfvén modes on NSTX-U with outboard beam injection
- Author(s):
- Fredrickson, E.D.; Belova, E.V.; Battaglia, D.J.; Bell, R.E.; Crocker, N.A.; Darrow, D.S.; Diallo, A.; Gerhardt, S.P.; Gorelenkov, N.N.; LeBlanc, B.P.; Podesta, M.
- Abstract:
- In this paper we present data from experiments on NSTX-U where it is shown for the first time that small amounts of high pitch-angle beam ions can strongly suppress the counter-propagating Global Alfvén Eigenmodes (GAE). GAE have been implicated in the redistribution of fast ions and modification of the electron power balance in previous experiments on NSTX. The ability to predict the stability of Alfvén modes, and developing methods to control them, is important for fusion reactor like the International Tokamak Experimental Reactor (ITER) which are heated by a large population of non-thermal, super-Alfvénic ions consisting of fusion generated alphas and beam ions injected for current profile control. We present a qualitative interpretation of these observations using an analytic model of the Doppler-shifted ion-cyclotron resonance drive responsible for GAE instability which has an important dependence on k⊥ρL. A quantitative analysis of this data with the HYM stability code predicts both the frequencies and instability of the GAE prior to, and suppression of the GAE after the injection of high pitch-angle beam ions.
- Type:
- Dataset
- Issue Date:
- June 2017
49. Impact of edge harmonic oscillations on the divertor heat flux in NSTX
- Author(s):
- Gan, Kaifu; Gray, Travis; Zweben, Stewart; Eric, Fredrickson; Maingi, Rajesh; Battaglia, Devon; McLean, Adam; Wirth, Brian
- Abstract:
- All the data was uploaded with .cvs file, we have not uploaded the figure 1 data since it is just photo show field of view of IR and GPI diagnostic.
- Type:
- Dataset
- Issue Date:
- 6 December 2021
50. Streaked Sub-ps-resolution X-ray Line Shapes and Implications for Solid-density Plasma Dynamics
- Author(s):
- Kraus, B. Frances; Gao, Lan; Hill, K. W.; Bitter, M.; Efthimion, P. C.; Hollinger, R.; Wang, Shoujun; Song, Huanyu; Nedbailo, R.; Rocca, J. J.; Mancini, R. C.; MacDonald, M. J.; Beatty, C. B.; Shepherd, R.
- Abstract:
- A high-resolution x-ray spectrometer was coupled with an ultrafast x-ray streak camera to produce time-resolved line shape spectra measured from hot, solid-density plasmas. A Bragg crystal was placed near a laser-produced plasma to maximize throughput; alignment tolerances were established by raytracing. The streak camera produced single-shot time-resolved spectra, heavily sloped due to photon time-of-flight differences, with sufficient reproducibility to accumulate photon statistics. The images are time-calibrated by the slope of streaked spectra and dewarped to generate spectra emitted at different times defined at the source. The streaked spectra demonstrate the evolution of spectral shoulders and other features on ps timescales, showing the feasibility of plasma parameter measurements on the rapid timescales necessary to study high-energy-density plasmas.
- Type:
- Dataset
- Issue Date:
- 2022