Link, A. James; Carson, Drew V.; So, Larry; Cheung-Lee, Wai Ling
Abstract:
This entry encompasses the raw NMR spectra used to determine the structure of the lasso peptide achromonodin-1. Within one file are included the five following spectra: COSY, TOCSY, NOESY (150 ms mixing time), NOESY (700 ms mixing time), and C,H HSQC. The file requires Mestrenova software to read. These spectra were used to develop the 3D structure models of achromonodin-1 that are deposited at the protein data bank (PDB) as entry 8SVB.
Caspary, Kyle J.; Choi, Dahan; Ebrahimi, Fatima; Gilson, Erik P.; Goodman, Jeremy; Ji, Hantao
Abstract:
The effects of axial boundary conductivity on the formation and stability of a magnetized free Stewartson-Shercliff layer (SSL) in a short Taylor-Couette device are reported. As the axial field increases with insulating endcaps, hydrodynamic Kelvin-Helmholtz-type instabilities set in at the SSLs of the conducting fluid, resulting in a much reduced flow shear. With conducting endcaps, SSLs respond to an axial field weaker by the square root of the conductivity ratio of endcaps to fluid. Flow shear continuously builds up as the axial field increases despite the local violation of the Rayleigh criterion, leading to a large number of hydrodynamically unstable modes. Numerical simulations of both the mean flow and the instabilities are in agreement with the experimental results.
Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on JET and NSTX-U. The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.
Sharma, A. Y.; Cole, M. D. J.; Görler, T.; Chen, Y.; Hatch, D. R.; Guttenfelder, W.; Hager, R.; Sturdevant, B. J.; Ku, S.; Mishchenko, A.; Chang, C. S.
Chang, Claire H. C.; Lazaridi, Christina; Yeshurun, Yaara; Norman, Kenneth A.; Hasson, Uri
Abstract:
This study examined how the brain dynamically updates event representations by integrating new information over multiple minutes while segregating irrelevant input. A professional writer custom-designed a narrative with two independent storylines, interleaving across minute-long segments (ABAB). In the last (C) part, characters from the two storylines meet and their shared history is revealed. Part C is designed to induce the spontaneous recall of past events, upon the recurrence of narrative motifs from A/B, and to shed new light on them. Our fMRI results showed storyline-specific neural patterns, which were reinstated (i.e. became more active) during storyline transitions. This effect increased along the processing timescale hierarchy, peaking in the default mode network. Similarly, the neural reinstatement of motifs was found during part C. Furthermore, participants showing stronger motif reinstatement performed better in integrating A/B and C events, demonstrating the role of memory reactivation in information integration over intervening irrelevant events.
Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
What mechanisms support our ability to estimate durations on the order of minutes? Behavioral studies in humans have shown that changes in contextual features lead to overestimation of past durations. Based on evidence that the medial temporal lobes and prefrontal cortex represent contextual features, we related the degree of fMRI pattern change in these regions with people's subsequent duration estimates. After listening to a radio story in the scanner, participants were asked how much time had elapsed between pairs of clips from the story. Our ROI analysis found that the neural pattern distance between two clips at encoding was correlated with duration estimates in the right entorhinal cortex and right pars orbitalis. Moreover, a whole-brain searchlight analysis revealed a cluster spanning the right anterior temporal lobe. Our findings provide convergent support for the hypothesis that retrospective time judgments are driven by 'drift' in contextual representations supported by these regions.
Our daily lives revolve around sharing experiences and memories with others. When different people recount the same events, how similar are their underlying neural representations? In this study, participants viewed a fifty-minute audio-visual movie, then verbally described the events while undergoing functional MRI. These descriptions were completely unguided and highly detailed, lasting for up to forty minutes. As each person spoke, event-specific spatial patterns were reinstated (movie-vs.-recall correlation) in default network, medial temporal, and high-level visual areas; moreover, individual event patterns were highly discriminable and similar between people during recollection (recall-vs.-recall similarity), suggesting the existence of spatially organized memory representations. In posterior medial cortex, medial prefrontal cortex, and angular gyrus, activity patterns during recall were more similar between people than to patterns elicited by the movie, indicating systematic reshaping of percept into memory across individuals. These results reveal striking similarity in how neural activity underlying real-life memories is organized and transformed in the brains of different people as they speak spontaneously about past events.
Yoo, Jongsoo; Jara-almonte, J.; Yerger, Evan; Wang, Shan; Qian, Tony; Le, Ari; Ji, Hantao; Yamada, Masaaki; Fox, William; Kim, Eun-Hwa; Chen, Li-Jen; Gershman, Daniel
Abstract:
Whistler wave generation near the magnetospheric separatrix during reconnection at the dayside magnetopause is studied with data from the Magnetospheric Multiscale (MMS) mission. The dispersion relation of the whistler mode is measured for the first time near the reconnection region in space, which shows that whistler waves propagate nearly parallel to the magnetic field line. A linear analysis indicates that the whistler waves are generated by temperature anisotropy in the electron tail population. This is caused by loss of electrons with a high velocity parallel to the magnetic field to the exhaust region. There is a positive correlation between activities of whistler waves and the lower-hybrid drift instability (LHDI) both in laboratory and space, indicating the enhanced transport by LHDI may be responsible for the loss of electrons with a high parallel velocity.
Guo, Xuehui; Pan, Da; Daly, Ryan; Chen, Xi; Walker, John; Tao, Lei; McSpiritt, James; Zondlo, Mark
Abstract:
Gas-phase ammonia (NH3), emitted primarily from agriculture, contributes significantly to reactive nitrogen (Nr) deposition. Excess deposition of Nr to the environment causes acidification, eutrophication, and loss of biodiversity. The exchange of NH3 between land and atmosphere is bidirectional and can be highly heterogenous when underlying vegetation and soil characteristics differ. Direct measurements that assess the spatial heterogeneity of NH3 fluxes are lacking. To this end, we developed and deployed two fast-response, quantum cascade laser-based open-path NH3 sensors to quantify NH3 fluxes at a deciduous forest and an adjacent grassland separated by 700 m in North Carolina, United States from August to November, 2017. The sensors achieved 10 Hz precisions of 0.17 ppbv and 0.23 ppbv in the field, respectively. Eddy covariance calculations showed net deposition of NH3 (-7.3 ng NH3-N m−2 s−1) to the forest canopy and emission (3.2 ng NH3-N m−2 s−1) from the grassland. NH3 fluxes at both locations displayed diurnal patterns with absolute magnitudes largest midday and with smaller peaks in the afternoons. Concurrent biogeochemistry data showed over an order of magnitude higher NH3 emission potentials from green vegetation at the grassland compared to the forest, suggesting a possible explanation for the observed flux differences. Back trajectories originating from the site identified the upwind urban area as the main source region of NH3. Our work highlights the fact that adjacent natural ecosystems sharing the same airshed but different vegetation and biogeochemical conditions may differ remarkably in NH3 exchange. Such heterogeneities should be considered when upscaling point measurements, downscaling modeled fluxes, and evaluating Nr deposition for different natural land use types in the same landscape. Additional in-situ flux measurements accompanied by comprehensive biogeochemical and micrometeorological records over longer periods are needed to fully characterize the temporal variabilities and trends of NH3 fluxes and identify the underlying driving factors.