Mollen Albert; Adams Mark F.; Knepley Matthew G.; Hager Robert; Chang C. S.
Abstract:
The global total-f gyrokinetic particle-in-cell code XGC, used to study transport in magnetic fusion plasmas or to couple with a core gyrokinetic code while functioning as an edge gyrokinetic code, implements a 5-dimensional (5D) continuum grid to perform the dissipative operations, such as plasma collisions, or to exchange the particle distribution function information with a core code. To transfer the distribution function between marker particles and a rectangular 2D velocity-space grid, XGC employs a bilinear mapping. The conservation of particle density and momentum is accurate enough in this bilinear operation, but the error in the particle energy conservation can become undesirably large and cause non-negligible numerical heating in a steep edge pedestal. In the present work we update XGC to use a novel mapping technique, based on the calculation of a pseudo-inverse, to exactly preserve moments up to the order of the discretization space. We describe the details of the implementation and we demonstrate the reduced interpolation error for a tokamak test plasma by using 1st- and 2nd-order elements with the pseudo-inverse method and comparing to the bilinear mapping.
Rafiq T; Kaye S; Guttenfelder W; Weiland J; Schuster E; Anderson J; Luo L;
Abstract:
Microtearing mode (MTM) real frequency, growth rate, magnetic fluctuation amplitude and resulting electron thermal transport are studied in systematic NSTX scans of relevant plasma parameters. The dependency of the MTM real frequency and growth rate on plasma parameters, suitable for low and high collision NSTX discharges, is obtained by using the reduced MTM transport model [T. Rafiq, et al., Phys. Plasmas 23, 062507 (2016)]. The plasma parameter dependencies are compared and found to be consistent with the results obtained from MTM using the Gyrokinetic GYRO code. The scaling trend of collision frequency and plasma beta is found to be consistent with the global energy confinement trend observed in the NSTX experiment. The strength of the magnetic fluctuation is found to be consistent with the gyrokinetic estimate.In earlier studies, it was found that the version of the Multi-Mode (MM) anomalous transport model, which did not contain the effect of MTMs, provided an appropriate description of the electron temperature profiles in standard tokamak discharges and not in spherical tokamaks. When the MM model, which involves transport associated with MTMs, is incorporated in the TRANSP code and is used in the study of electron thermal transport in NSTX discharges, it is observed that the agreement with the experimental electron temperature profile is substantially improved.
Verdoolaege, G.; Kaye, S.M.; Angioni, C.; Kardaunn, O.W.J.F.; Maslov, M.; Romanelli, M.; Ryter, F.; Thomsen, K.
Abstract:
The multi-machine ITPA Global H-mode Confinement Database has been upgraded with new data from JET with the ITER-like wall and ASDEX Upgrade with the full tungsten wall. This paper describes the new database and presents results of regression analysis to estimate the global energy confinement scaling in H-mode plasmas using a standard power law. Various subsets of the database are considered, focusing on type of wall and divertor materials, confinement regime (all H-modes, ELMy H or ELM-free) and ITER-like constraints. Apart from ordinary least squares, two other, robust regression techniques are applied, which take into account uncertainty on all variables. Regression on data from individual devices shows that, generally, the confinement dependence on density and the power degradation are weakest in the fully metallic devices. Using the multi-machine scalings, predictions are made of the confinement time in a standard ELMy H-mode scenario in ITER. The uncertainty on the scaling parameters is discussed with a view to practically useful error bars on the parameters and predictions. One of the derived scalings for ELMy H-modes on an ITER-like subset is studied in particular and compared to the IPB98(y,2) confinement scaling in engineering and dimensionless form. Transformation of this new scaling from engineering variables to dimensionless quantities is shown to result in large error bars on the dimensionless scaling. Regression analysis in the space of dimensionless variables is therefore proposed as an alternative, yielding acceptable estimates for the dimensionless scaling. The new scaling, which is dimensionally correct within the uncertainties, suggests that some dependencies of confinement in the multi- machine database can be reconciled with parameter scans in individual devices. This includes vanishingly small dependence of confinement on line-averaged density and normalized plasma pressure (β), as well as a noticeable, positive dependence on effective atomic mass and plasma triangularity. Extrapolation of this scaling to ITER yields a somewhat lower confinement time compared to the IPB98(y, 2) prediction, possibly related to the considerably weaker dependence on major radius in the new scaling (slightly above linear). Further studies are needed to compare more flexible regression models with the power law used here. In addition, data from more devices concerning possible ‘hidden variables’ could help to determine their influence on confinement, while adding data in sparsely populated areas of the parameter space may contribute to further disentangling some of the global confinement dependencies in tokamak plasmas.
Nespoli, Federico; Kaganovich, Igor; Autricque, Adrien; Marandet, Yannick; Tamain, Patrick
Abstract:
The effect of plasma turbulence on the trajectories of dust particles is investigated for the first time. The dynamics of dust particles is computed using the ad-hoc developed Dust Injection Simulator code, using a 3D turbulent plasma background computed with the TOKAM3X code. As a result, the evolution of the particle trajectories is governed by the ion drag force, and the shape of the trajectory is set by the Stokes number $St\propto a_d/n_0$, with $a_d$ the dust radius and $n_0$ the density at the separatrix. The plasma turbulence is observed to scatter the dust particles, exhibiting a hyperdiffusive regime in all cases. The amplitude of the turbulent spread of the trajectories $\Delta r^2$ is shown to depend on the ratio $Ku/St$, with $Ku\propto u_{rms}$ the Kubo number and $u_{rms}$ the fluctuation level of the plasma flow. These results are compared with a simple analytical model, predicting $\Delta r^2\propto (Ku/St)^2t^3$, or $\Delta r^2\propto (u_{rms}n_0/a_d)^2t^3$. As the dust is heated by the plasma fluxes, thermionic emission sets the dust charge, originally negative, to slightly positive values. This results in a substantial reduction of the ion drag force through the suppression of its Coulomb scattering component. The dust grain inertia is then no longer negligible, and drives the transition from a hyperdiffusive regime towards a ballistic one.
Choi, W.; Poli, F. M.; Li, M. H.; Baek, S. G.; Gorenlenkova, M.; Ding, B. J.; Gong, X. Z.; Chan, A.; Duan, Y. M.; Hu, J. H.; Lian, H.; Lin, S. Y.; Liu, H. Q.; Qian, J. P.; Wallace, G.; Wang, Y. M.; Zang, Q.; Zhao, H. L.
Abstract:
Synergistic effects between two frequencies of lower hybrid (LH) waves—operating at 2.45 and 4.6 GHz—were observed in experiment on EAST for the first time. At low density (n_e,lin ≈ 2.0 × 10^19m^−3), simultaneous injection of a 65/35 mix of 2.45 GHz/4.6 GHz power achieved an LHCD efficiency that was 25% higher than what should be expected from the linear combination of the two sources. The experiment was interpreted with time-dependent simulations, using the equilibrium and transport solver TRANSP, coupled with the ray-tracing code GENRAY and the Fokker-Planck solver CQL3D. For each discharge, profiles of current and hard x-ray from simulation and measurement agree within uncertainties. An examination of the electron distribution function indicates that the LH synergy is supported by the increased width of the LH resonance plateau in the simultaneous injection case compared to independent injection.
Baldwin, Jane W; Dessy, Jay Benjamin; Vecchi, Gabriel A; Oppenheimer, Michael; Jia, Liwei; Gudgel, Richard G; Paffendorf, Karen
Abstract:
This data is compiled to support a publication in the journal Earth's Future: Baldwin et al 2019 "Temporally Compound Heat Waves and Global Warming: An Emerging Hazard".
The GCM GFDL CM2.5-FLOR was used to produce the raw climate model data. The model code for FLOR is freely available and can be downloaded at https://www.gfdl.noaa.gov/cm2-5-and-flor/. Code used to calculate the derived heat wave statistics data and produce figures in the paper is available at https://github.com/janewbaldwin/Compound-Heat-Waves
The heat wave statistics derived output for only one definition is provided (daily minimum temperature, 90th percentile threshold, temporal structure 3114) which is the definition used the most in the paper figures. Statistics for the other definitions can be created by running the HWSTATS code provided in the corresponding github folder, which includes python scripts which do the analysis and PBS job scheduling and submission scripts which show how to run the python scripts. For more information on this, please see the github readme.