Have a look around our new website for the discovery and sharing of research data and let us know what you think. See How to Submit for instructions on how to publish your research data and code.
This item contains two files. A multi-layer perceptron (MLP) neural network is built using the MATLAB Deep Network Designer (.m file). It imports a quantum cascade laser (QCL) dataset and splits it into 70% training, 15% validation, and 15% testing subsets. The network consists of an input layer, three hidden layers (each having a normalization and activation layer), and a regression output layer. All of the layers are fully connected, and the root-mean-square error (RMSE) is used to evaluate the accuracy of the network. An algorithm is trained on the [-5, +20] QCL dataset using 50 neurons, ReLU activation function, solver Adam, 0.001 learning rate, over 50 epochs, and is saved to be used in the prediction of figure of merit values for QCL designs (.mat file).
A dataset of 2400 quantum cascade structures at 15 electric field iterations, for a total of 36000 unique designs. The structures are generated by randomly altering a starting 10-layer design of alternating Al0.48In0.52As barrier material and In0.53Ga0.47As well material, with layer thickness sequence of 9/57/11/54/12/45/25/34/14/33 Angstroms (starting with well material). The random tolerance range is from -5 to +20 Angstroms in 5 Angstrom increments. The laser transition Figure of Merit, among other quantities of interest, is identified for each design using a method found in:
A. C. Hernandez, M. Lyu and C. F. Gmachl, "Generating Quantum Cascade Laser Datasets for Applications in Machine Learning," 2022 IEEE Photonics Society Summer Topicals Meeting Series (SUM), 2022, pp. 1-2, doi: 10.1109/SUM53465.2022.9858281