We discuss a novel diagnostic allowing direct measurements of the local electric field in the edge region in NSTX/NSTX-U. This laser based diagnostic's principle consists of depleting the naturally populated $n=3$ level to a Rydberg state --sensitive to electric fields-- that will result in a suppression of part of the $D_{\alpha}$ emission. We refer to this approach as Laser-Induced Rydberg Spectroscopy (LIRyS). It is shown that the local electric field can be measured through the Stark induced resonances observed as dips in the $D_\alpha$ emission. Using forward-modeling of simulated absorption spectra, we show precisions reaching \SI{\pm 2}{\kilo\volt\per\meter} in regions with a local electric field of \SI{15}{\kilo\volt\per\meter}.
Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
Abstract:
Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.
The dielectric function for "Astrodust" grain material is provided for different assumed values of the dust grain shape (spheroid axis ratio) and porosity (vacuum fraction), and fraction of the interstellar iron present as metallic inclusions. For each case, the dielectric function is obtained by requiring that the grains reproduce the observed infrared opacity, and match to a physically reasonable dielectric function at 1 micron, and extending to X-ray energies. The derived dielectric functions satisfy the Kramers-Kronig relations. Dielectric functions are provided from 1 Angstrom to 5 cm (12.4 keV to 2.59e-5 eV).
For each dielectric function, we also calculate absorption and scattering corss sections for spheroidal grains, for three orientations of the grain relative to incident linearly-polarized light, for wavelengths from the Lyman limit (0.0912 micron) to the microwave (4 cm), and grain "effective radii" a_eff from 3.162A to 5.012 micron.
Notterman, Daniel A; Schneper, Lisa M; Drake, Amanda; Piyasena, Chinthika
Abstract:
This entry contains the data used in the PLOS ONE publication entitled, "Characteristics of salivary telomere length shortening in preterm infants" by Schneper et al. The objective of the study was to examine the association between gestational age, telomere length (TL) and rate of shortening in newborns. Genomic DNA was isolated from buccal samples of 39 term infants at birth and one year and 32 preterm infants at birth, term-adjusted age (40 weeks post-conception) and age one-year corrected for gestational duration. Telomere length was measured by quantitative real-time PCR. Demographic and clinical data were collected during clinic or research visits and from hospital records. Socioeconomic status was estimated using the deprivation category (DEPCAT) scores derived from the Carstairs score of the subject's postal code.
Woods, B. J. Q.; Duarte, V. N.; Fredrickson, E. D.; Gorelenkov, N. N.; Podestà, M.; Vann, R. G. L.
Abstract:
Abrupt large events in the Alfvenic and sub-Alfvenic frequency bands in tokamaks are typically correlated with increased fast-ion loss. Here, machine learning is used to speed up the laborious process of characterizing the behavior of magnetic perturbations from corresponding frequency spectrograms that are typically identified by humans. The analysis allows for comparison between different mode character (such as quiescent, fixed frequency, and chirping, avalanching) and plasma parameters obtained from the TRANSP code, such as the ratio of the neutral beam injection (NBI) velocity and the Alfven velocity (v_inj./v_A), the q-profile, and the ratio of the neutral beam beta and the total plasma beta (beta_beam,i / beta). In agreement with the previous work by Fredrickson et al., we find a correlation between beta_beam,i and mode character. In addition, previously unknown correlations are found between moments of the spectrograms and mode character. Character transition from quiescent to nonquiescent behavior for magnetic fluctuations in the 50200-kHz frequency band is observed along the boundary v_phi ~ (1/4)(v_inj. - 3v_A), where v_phi is the rotation velocity.