Number of results to display per page
Search Results
42. Deep Potential training data for crystalline and disordered TiO2 phases
- Author(s):
- Calegari Andrade, Marcos; Selloni, Annabella
- Abstract:
- Data set used to train a Deep Potential (DP) model for crystalline and disordered TiO2 phases. Training data contain atomic forces, potential energy, atomic coordinates and cell tensor. Energy and forces were evaluated with the density functional SCAN, as implemented in Quantum-ESPRESSO. Atomic configurations of crystalline systems were generated by random perturbation of atomic positions (0-0.3 A) and cell tensor (1-10%). Amorphous TiO2 was explored by DP molecular dynamics (DPMD) at temperatures in the range 300−2500 K and pressure in the range 0−81 GPa.
- Type:
- Dataset
- Issue Date:
- 9 October 2020
43. Deep Potential training data for subcritical and supercritical water
- Author(s):
- Calegari Andrade, Marcos; Ko, Hsin-Yu; Car, Roberto
- Abstract:
- Data set used to train a Deep Potential (DP) model for subcritical and supercritical water. Training data contain atomic forces, potential energy, atomic coordinates and cell tensor. Energy and forces were evaluated with the density functional SCAN. Atomic configurations were extracted from DP molecular dynamics at P = 250 bar and T = 553, 623, 663, 733 and 823 K. Input files used to train the DP model are also provided.
- Type:
- Dataset
- Issue Date:
- 19 August 2020
44. Deep convolutional neural networks for multi-scale time-series classification and application to disruption prediction in fusion devices
- Author(s):
- Churchill, R.M; the DIII-D team
- Abstract:
- The multi-scale, mutli-physics nature of fusion plasmas makes predicting plasma events challenging. Recent advances in deep convolutional neural network architectures (CNN) utilizing dilated convolutions enable accurate predictions on sequences which have long-range, multi-scale characteristics, such as the time-series generated by diagnostic instruments observing fusion plasmas. Here we apply this neural network architecture to the popular problem of disruption prediction in fusion tokamaks, utilizing raw data from a single diagnostic, the Electron Cyclotron Emission imaging (ECEi) diagnostic from the DIII-D tokamak. ECEi measures a fundamental plasma quantity (electron temperature) with high temporal resolution over the entire plasma discharge, making it sensitive to a number of potential pre-disruptions markers with different temporal and spatial scales. Promising, initial disruption prediction results are obtained training a deep CNN with large receptive field ({$\sim$}30k), achieving an $F_1$-score of {$\sim$}91\% on individual time-slices using only the ECEi data.
- Type:
- Dataset
- Issue Date:
- October 2019
45. Delivery Gig Worker Interviews on Automation at Work
- Author(s):
- Enriquez, Diana
- Abstract:
- These data include 39 structured interview transcripts. Each case is someone who worked at the time for Uber, UberEats, Lyft, and/or Amazon Flex (Amazon’s contractor delivery service). These data were collected between July and September 2019. All but one of the interviews occurred over the phone. My questions are focused on the structure of their gig work jobs and the technology they used at work or expected to use at work in the future. I included a description of the data, the recruitment methods, and the discussion guide in this ReadMe file.
- Type:
- Dataset
- Issue Date:
- 21 September 2021
46. Demonstrating electromagnetic control of free-surface, liquid-metal flows relevant to fusion reactors
- Author(s):
- Hvasta, M. G.; Kolemen, E.; Fisher, A. E.; Ji, H.
- Abstract:
- Plasma-facing components (PFC's) made from solid materials may not be able to withstand the large heat and particle fluxes that will be produced within next-generation fusion reactors. To address the shortcomings of solid PFC's, a variety of liquid-metal (LM) PFC concepts have been proposed. Many of the suggested LM-PFC designs rely on electromagnetic restraint (Lorentz force) to keep free-surface, liquid-metal flows adhered to the interior surfaces of a fusion reactor. However, there is very little, if any, experimental data demonstrating that free-surface, LM-PFC's can actually be electromagnetically controlled. Therefore, in this study, electrical currents were injected into a free-surface liquid-metal that was flowing through a uniform magnetic field. The resultant Lorentz force generated within the liquid-metal affected the velocity and depth of the flow in a controllable manner that closely matched theoretical predictions. These results show the promise of electromagnetic control for LM-PFC's and suggest that electromagnetic control could be further developed to adjust liquid-metal nozzle output, prevent splashing within a tokamak, and alter heat transfer properties for a wide-range of liquid-metal systems.
- Type:
- Dataset
- Issue Date:
- January 2018
47. Density perturbation mode structure of high frequency compressional and global Alfvén eigenmodes in the National Spherical Torus Experiment using a novel reflectometer analysis technique
- Author(s):
- Crocker, N.A.; Kubota, S.; Peebles, W.A.; Rhodes, T.L.; Fredrickson, E.D.; Belova, E.; Diallo, A.; LeBlanc, B.P.; Sabbagh, S.A.
- Abstract:
- Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2–4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).
- Type:
- Dataset
- Issue Date:
- November 2017
48. Derrida's Margins datasets
- Author(s):
- Chenoweth, Katie; Baron-Raiffe, Alexander; Sutton Koeser, Rebecca
- Abstract:
- Derrida’s Margins <derridas-margins.princeton.edu> is a website and online research tool for annotations from the Library of Jacques Derrida, housed at Princeton University Library (PUL) <library.princeton.edu>. Jacques Derrida is one of the major figures of twentieth-century thought, and his library--which bears the traces of decades of close reading--represents a major intellectual archive. This project focused on annotations related to Derrida’s landmark 1967 work De la grammatologie (Of Grammatology).
- Type:
- Dataset
- Issue Date:
- 15 October 2021
49. Design and measurement methods for a lithium vapor box similarity experiment
- Author(s):
- Schwartz, J. A.; Emdee, E. D.; Jaworski, M. A; Goldston, R. J.
- Abstract:
- The lithium vapor box divertor is a concept for handling the extreme divertor heat fluxes in magnetic fusion devices. In a baffled slot divertor, plasma interacts with a dense cloud of Li vapor which radiates and cools the plasma, leading to recombination and detachment. Before testing on a tokamak the concept should be validated: we plan to study detachment and heat redistribution by a Li vapor cloud in laboratory experiments. Mass changes and temperatures are measured to validate a Direct Simulation Monte Carlo model of neutral Li. The initial experiment involves a 5 cm diameter steel box containing 10g of Li held at 650 degrees C as vapor flows out a wide nozzle into a similarly-sized box at a lower temperature. Diagnosis is made challenging by the required material compatibility with lithium vapor. Vapor pressure is a steep function of temperature, so to validate mass flow models to within 10%, absolute temperature to within 4.5K is required. The apparatus is designed to be used with an analytical balance to determine mass transport. Details of the apparatus and methods of temperature and mass flow measurements are presented.
- Type:
- Dataset
- Issue Date:
- August 2018
50. Design and simulation of the snowflake divertor control for NSTX-U
- Author(s):
- Vail, P. J.; Boyer, M. D.; Welander, A. S.; Kolemen, E.; U.S. Department of Energy contract number DE-AC02-09CH11466
- Abstract:
- This paper presents the development of a physics-based multiple-input-multiple-output algorithm for real-time feedback control of snowflake divertor (SFD) configurations on the National Spherical Torus eXperiment Upgrade (NSTX-U). A model of the SFD configuration response to applied voltages on the divertor control coils is first derived and then used, in conjunction with multivariable control synthesis techniques, to design an optimal state feedback controller for the configuration. To demonstrate the capabilities of the controller, a nonlinear simulator for axisymmetric shape control was developed for NSTX-U which simultaneously evolves the currents in poloidal field coils based upon a set of feedback-computed voltage commands, calculates the induced currents in passive conducting structures, and updates the plasma equilibrium by solving the free-boundary Grad-Shafranov problem. Closed-loop simulations demonstrate that the algorithm enables controlled operations in a variety of SFD configurations and provides capabilities for accurate tracking of time-dependent target trajectories for the divertor geometry. In particular, simulation results suggest that a time-varying controller which can properly account for the evolving SFD dynamical response is not only desirable but necessary for achieving acceptable control performance. The algorithm presented in this paper has been implemented in the NSTX-U Plasma Control System in preparation for future control and divertor physics experiments.
- Type:
- Dataset
- Issue Date:
- April 2019
51. Design of Faraday cup ion detectors built by thin film deposition
- Author(s):
- Szalkowski, G.A.; Darrow, D.S.; Cecil, F.E.
- Abstract:
- Thin film Faraday cup detectors can provide measurements of fast ion loss from magnetically confined fusion plasmas. These multilayer detectors can resolve the energy distribution of the lost ions in addition to giving the total loss rate. Prior detectors were assembled from discrete foils and insulating sheets. Outlined here is a design methodology for creating detectors using thin film deposition that are suited to particular scientific goals. The intention is to use detectors created by this method on JET and NSTX-U. The detectors will consist of alternating layers of aluminum and silicon dioxide, with layer thicknesses chosen to isolate energies of interest. Thin film deposition offers the advantage of relatively simple and more mechanically robust construction compared to other methods, as well as allowing precise control of film thickness. Furthermore, this depositional fabrication technique places the layers in intimate thermal contact, providing for three-dimensional conduction and dissipation of the ion-produced heating in the layers, rather than the essentially two-dimensional heat conduction in the discrete foil stack implementation.
- Type:
- Dataset
- Issue Date:
- January 2017
52. Detection of an electron beam in a high density plasma via an electrostatic probe
- Author(s):
- Majeski, Stephen; Yoo, Jongsoo; Zweben, Stewart; Yamada, Masaaki
- Abstract:
- An electron beam is detected by a 1D floating potential probe array in a relatively high density (10e12 − 10e13 cm−3) and low temperature (∼ 5 eV) plasma of the Magnetic Reconnection Experiment (MRX). Clear perturbations in the floating potential profile by the electron beam are observed. Based on the floating potential profile and a current balance equation to the probe array tips, the effective width of the electron beam is determined, from which we determine the radial and toroidal beam current density profiles. After the profile of the electron beam is specified from the measured beam current, we demonstrate the consistency of the current balance equation and the location of the perturbation is also in agreement with field line mapping. No significant broadening of the electron beam is observed after the beam propagates for tens of centimeters through the high density plasma. These results prove that the field line mapping is, in principle, possible in high density plasmas.
- Type:
- Dataset
- Issue Date:
- 2018
53. Development of a reduced model for energetic particle transport by sawteeth in tokamaks
- Author(s):
- Podesta, Mario
- Type:
- Dataset
- Issue Date:
- 9 November 2021
54. Development of miniaturized, spectroscopically assisted Penning gauges for fractional helium and hydrogen neutral pressure measurements
- Author(s):
- Flesch, K.; Kremeyer, T.; Schmitz, O.; Soukhanovskii, V.; Wenzel, U.
- Abstract:
- Direct measurements of the helium (He) fractional neutral pressure in the neutral gas around fusion devices is challenging because of the small mass difference between the abundant D2 molecules and the He atoms which will be produced by D-T fusion. To study He exhaust, Penning gauges were used to measure total neutral pressure assisted by spectroscopy to resolve the D and He partial pressures. In this contribution, initial results are shown from developing this technique into a miniaturized configuration for direct in-situ measurements in the divertor of fusion devices. The configuration is based off a gauge originally designed for the National Spherical Tokamak Experiment-Upgrade (NSTX-U). The goal of this new miniaturized design it to reduce the space required by the gauge on the device and use of the inherent magnetic field of the machine rather than permanent magnets inside the gauge, enabling it to be adapted into a system that can be extended directly into the divertor region. The feasibility test of the method for NSTX-U and the Wendelstein 7-X (W7-X) stellarator are surveyed. For W7-X, a commercial Penning Gauge has been installed on an outboard vacuum flange as a generic feasibility test in the neutral gas environment of a stellarator. At an integration time of 25s, helium lines can be seen down to 10^-5 mbar and H-alpha lines down to 10^-6 mbar. Successful measurement of the total as well as the fractional neutral pressures of He and H has been shown. A first prototype of the miniature Penning gauge has been tested in Madison and shows a near linear power law scaling between current and pressure: I = C*P^n with n = 1.0 - 1.2. Pressure measurements were achieved starting at 10^-3 mbar and down to 10^-6 mbar. A modular gauge is being assembled, which allows easy interchangeability of the anode to test new anode geometries, in order to improve optical access and increase spectroscopic sensitivity. This shall enable an increase of the time resolution of the spectroscopically assisted fractional neutral pressure measurements to up to 1kHz.
- Type:
- Dataset
- Issue Date:
- November 2016
55. Diagnostics for molybdenum and tungsten erosion and transport in NSTX-U
- Author(s):
- Scotti, F.; Soukhanovskii, V.; Weller, M.
- Abstract:
- A comprehensive set of spectroscopic diagnostics is planned in the National Spherical Torus Experi- ment Upgrade to connect measurements of molybdenum and tungsten divertor sources to scrape-o↵ layer (SOL) and core impurity transport, supporting the installation of high-Z plasma facing compo- nents which is scheduled to begin with a row of molybdenum tiles. Imaging with narrow-bandpass interference filters and high-resolution spectroscopy will be coupled to estimate divertor impurity influxes. Vacuum ultraviolet and extreme ultraviolet spectrometers will allow connecting high-Z sources to SOL transport and core impurity content. The high-Z diagnostics suite complements the existing measurements for low-Z impurities (carbon and lithium), critical for the characterization of sputtering of high-Z materials.
- Type:
- Dataset
- Issue Date:
- November 2016
56. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori
- Author(s):
- Taylor, Jenny A.; Bratton, Benjamin P.; Sichel, Sophie R.; Blair, Kris M.; Jacobs, Holly M.; DeMeester, Kristen E.; Kuru, Erkin; Gray, Joe; Biboy, Jacob; VanNieuwenhze, Michael S.; Vollmer, Waldemar; Grimes, Catherine L.; Shaevitz, Joshua W.; Salama, Nina R.
- Abstract:
- Helical cell shape is necessary for efficient stomach colonization by Helicobacter pylori, but the molecular mechanisms for generating helical shape remain unclear. We show that the helical centerline pitch and radius of wild-type H. pylori cells dictate surface curvatures of considerably higher positive and negative Gaussian curvatures than those present in straight- or curved-rod bacteria. Quantitative 3D microscopy analysis of short pulses with either N-acetylmuramic acid or D-alanine metabolic probes showed that cell wall growth is enhanced at both sidewall curvature extremes. Immunofluorescence revealed MreB is most abundant at negative Gaussian curvature, while the bactofilin CcmA is most abundant at positive Gaussian curvature. Strains expressing CcmA variants with altered polymerization properties lose helical shape and associated positive Gaussian curvatures. We thus propose a model where CcmA and MreB promote PG synthesis at positive and negative Gaussian curvatures, respectively, and that this patterning is one mechanism necessary for maintaining helical shape.
- Type:
- Dataset and Image
- Issue Date:
- April 2019
57. Dust and Starlight Maps for Galaxies in the KINGFISH Sample
- Author(s):
- Aniano, G.; Draine, B.T.; Hunt, L.K.; Sandstrom, K.; Calzetti, D.; Kennicutt, R.C.; Dale, D.A.; Galametz, M.; Gordon, K.D.; Leroy, A.K.; Smith, J.-D.T.; Roussel, H.; Sauvage, M.; Walter, F.; Armus, L.; Bolatto, A.D.; Boquien, M.; Crocker, A.; De Looze, I.; Donovan Meyer, J.; Helou, G.; Hinz, J.; Johnson, B.D.; Koda, J.; Miller, A.; Montiel, E.; Murphy, E.J.; Relano, M.; Rix, H.-W.; Schinnerer, E.; Skibba, R.; Wolfire, M.G.; Engelbracht, C.W.
- Abstract:
- Dust and starlight have been modeled for the KINGFISH project galaxies. For each pixel in each galaxy, we estimate: (1) dust surface density; (2) q_PAH, the dust mass fraction in PAHs; (3) distribution of starlight intensities heating the dust; (4) luminosity emitted by the dust; and (5) dust luminosity from regions with high starlight intensity. The modeling is as described in the paper "Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: The KINGFISH Sample", by G. Aniano, B.T. Draine, L.K. Hunt, K. Sandstrom, D. Calzetti, R.C. Kennicutt, D.A, Dale, and 26 other authors, accepted for publication in The Astrophysical Journal.
- Type:
- Dataset and Image
58. Dynamics of filaments during the edge-localized mode crash on NSTX
- Author(s):
- Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
- Abstract:
- Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
- Type:
- Dataset
- Issue Date:
- January 2021
59. ELM frequency enhancement and discharge modification through lithium granule injection into EAST H-modes
- Author(s):
- Lunsford; Hsu, J.S.; Sun, Z.; Maingi, R.; Mansfield, D.K.; Xu, W.; Zuo, G.Z.; Huang, M.; Diallo, A.; Osborne, T.; Tritz, K.; Canik, J.; Meng, X.C.; Gong, X.Z.; Wan, B.N.; Li, J.G.; EAST Team
- Abstract:
- The injection of impurity granules into fusion research discharges can serve as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule sizes above a threshold, this can result in full control of the ELM cycle, referred to as ELM pacing. For this research, we extend the investigation to conditions where the natural ELM frequency is too high for ELM pacing to be realized. Utilizing multiple sizes of lithium granules and classifying their effects by granule size, we demonstrate that ELM mitigation through frequency multiplication can be used at ELM triggering rates that nominally make ELM pacing unrealizable. We find that above a size threshold, injected granules promptly trigger ELMs and commensurately enhance the ELM frequency . Below this threshold size, injection of an individual granule does not always lead to the prompt triggering of an ELM; however, collective ablation in the edge pedestal region does enhance the ELM frequency. Specifically, Li granules too small to individually trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz; collectively the granules were observed to enhance the natural ELM frequency up to 620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50% decrease of the ELM size.
- Type:
- Dataset
- Issue Date:
- October 2018
60. Effect of progressively increasing lithium conditioning on edge transport and stability in high triangularity NSTX H-modes
- Author(s):
- Maingi, R.; Canik, J.M.; Bell, R.E.; Boyle, D.P.; Diallo, A.; Kaita, R.; Kaye, S.M.; LeBlanc, B.P.; Sabbagh, S.A.; Scotti, F.; Soukhanovskii, V.A.
- Abstract:
- A sequence of H-mode discharges with increasing levels of pre-discharge lithium evaporation (�dose�) was conducted in high triangularity and elongation boundary shape in NSTX. Energy confinement increased, and recycling decreased with increasing lithium dose, similar to a previous lithium dose scan in medium triangularity and elongation plasmas. Data-constrained SOLPS interpretive modeling quantified the edge transport change: the electron particle diffusivity decreased by 10-30x. The electron thermal diffusivity decreased by 4x just inside the top of the pedestal, but increased by up to 5x very near the separatrix. These results provide a baseline expectation for lithium benefits in NSTX-U, which is optimized for a boundary shape similar to the one in this experiment.
- Type:
- Dataset
- Issue Date:
- August 2016