Data set used to train a Deep Potential (DP) model for crystalline and disordered TiO2 phases. Training data contain atomic forces, potential energy, atomic coordinates and cell tensor. Energy and forces were evaluated with the density functional SCAN, as implemented in Quantum-ESPRESSO. Atomic configurations of crystalline systems were generated by random perturbation of atomic positions (0-0.3 A) and cell tensor (1-10%). Amorphous TiO2 was explored by DP molecular dynamics (DPMD) at temperatures in the range 300−2500 K and pressure in the range 0−81 GPa.
Data set used to train a Deep Potential (DP) model for
subcritical and supercritical water. Training data contain atomic forces,
potential energy, atomic coordinates and cell tensor. Energy and forces
were evaluated with the density functional SCAN. Atomic configurations
were extracted from DP molecular dynamics at P = 250 bar and
T = 553, 623, 663, 733 and 823 K. Input files used to train the DP model
are also provided.
The control of divertor heat loads - both steady state and transient - remains a key challenge for the successful operation of ITER and FNSF. Magnetic perturbations provide a promising technique to control ELMs (transients), but understanding their detailed impact is difficult due to their symmetry breaking nature. One approach for reducing steady state heat loads are so called 'advanced divertors' which aim at optimizing the magnetic field configuration: the snowflake and the (super-)X-divertor. It is likely that both concepts - magnetic perturbations and advanced divertors - will have to work together, and we explore their interaction based on the NSTX-U setup. An overview of different divertor configurations under the impact of magnetic perturbations is presented, and the resulting impact on plasma edge transport is investigated with the EMC3-EIRENE code.
Variations in size of the magnetic footprint of the perturbed separatrix are found, which is related to the level of flux expansion on the divertor target. Non-axisymmetric peaking of the heat flux related to the perturbed separatrix is found at the outer strike point, but only in locations where flux expansion is not too large.
The injection of impurity granules into fusion research discharges can serve
as a catalyst for ELM events. For sufficiently low ELM frequencies, and granule
sizes above a threshold, this can result in full control of the ELM cycle,
referred to as ELM pacing. For this research, we extend the investigation
to conditions where the natural ELM frequency is too high for ELM pacing to
be realized. Utilizing multiple sizes of lithium granules and classifying their
effects by granule size, we demonstrate that ELM mitigation through frequency
multiplication can be used at ELM triggering rates that nominally make ELM pacing
unrealizable. We find that above a size threshold, injected granules promptly
trigger ELMs and commensurately enhance the ELM frequency . Below this threshold
size, injection of an individual granule does not always lead to the prompt
triggering of an ELM; however, collective ablation in the edge pedestal region
does enhance the ELM frequency. Specifically, Li granules too small to individually
trigger ELMs were injected into EAST H-mode discharges at frequencies up to 2.3 kHz;
collectively the granules were observed to enhance the natural ELM frequency up to
620 Hz, resulting in a ~2.4x multiplication of the natural ELM frequency and a 50%
decrease of the ELM size.
The ability of an injected lithium granule to promptly trigger an edge localized mode (ELM) has been established in multiple experiments. By horizontally injecting granules ranging in diameter from 200 microns to 1mm in diameter into the low field side of EAST H-mode discharges we have determined that granules with diameter > 600 microns are successful in triggering ELMs more than 95% of the time. It was also demonstrated that below 600 microns the triggering efficiency decreased roughly with granule size. Granules were radially injected from the outer midplane with velocities ~ 80 m/s into EAST upper single null discharges with an ITER like tungsten monoblock divertor. These granules were individually tracked throughout their injection cycle in order to determine their efficacy at triggering an ELM. For those granules of sufficient size, ELM triggering was a prompt response to granule injection. By simulating the granule injection with an experimentally benchmarked neutral gas shielding (NGS) model, the ablatant mass deposition required to promptly trigger an ELM is calculated and the fractional mass deposition is determined.
We report the first successful use of lithium (Li) to eliminate edge-localized modes (ELMs) with tungsten divertor plasma-facing components in the EAST device. Li powder injected into the scrape-off layer of the tungsten upper divertor successfully eliminated ELMs for 3-5 sec in EAST. The ELM elimination became progressively more effective in consecutive discharges at constant lithium delivery rates, and the divertor D-alpha baseline emission was reduced, both signatures of improved wall conditioning. A modest decrease in stored energy and normalized energy confinement was also observed, but the confinement relative to H98 remained well above 1, extending the previous ELM elimination results via Li injection into the lower carbon divertor in EAST [J.S. Hu et al., Phys. Rev. Lett. 114 (2015) 055001]. These results can be compared with recent observations with lithium pellets in ASDEX-Upgrade that failed to mitigate ELMs [P.T. Lang et al., Nucl. Fusion 57 (2017) 016030], highlighting one comparative advantage of continuous powder injection for real-time ELM elimination.
Gartner III, Thomas E.; Torquato, Salvatore; Car, Roberto; Debenedetti, Pablo G.
Abstract:
This dataset contains all data related to the publication "Manifestations of metastable criticality in glassy water-like models detected by large-scale structural properties" by Gartner et al., in preparation 2020. In this work, we used molecular dynamics simulations to explore the relationship between water's polyamorphism (multiple amorphous solid states) and its hypothesized liquid-liquid transition. Using the TIP4P/2005 molecular model of water, we found a surprising signature of water's liquid-liquid critical point in the long-range structure of water's amorphous solid states formed by isobaric cooling at different pressures. This structural signature was absent in two other systems that lack a critical point. This dataset contains molecular dynamics simulation trajectories, as well as processed data, analysis codes, and image files used in the publication.
Piaggi, Pablo M; Gartner, Thomas E; Car, Roberto; Debenedetti, Pablo G
Abstract:
The possible existence of a liquid-liquid critical point in deeply supercooled water has been a subject of debate in part due to the challenges associated with providing definitive experimental evidence. Pioneering work by Mishima and Stanley [Nature 392, 164 (1998) and Phys.~Rev.~Lett. 85, 334 (2000)] sought to shed light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the expected location of the liquid-liquid transition and its associated critical point. Based on the continuous or discontinuous changes in slope of the melting curves, Mishima suggested that the liquid-liquid critical point lies between the melting curves of ice III and ice V. Here, we explore this conjecture using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII using this model and find that the melting lines of all the studied ice polymorphs are supercritical and do not intersect the liquid-liquid transition locus. We also find a pronounced, yet continuous, change in slope of the melting lines upon crossing of the locus of maximum compressibility of the liquid. Finally, we analyze critically the literature in light of our findings, and conclude that the scenario in which melting curves are supercritical is favored by the most recent computational and experimental evidence. Thus, although the preponderance of experimental and computational evidence is consistent with the existence of a second critical point in water, the behavior of the melting lines of ice polymorphs does not provide strong evidence in support of this viewpoint, according to our calculations.
Gartner, Thomas III; Zhang, Linfeng; Piaggi, Pablo; Car, Roberto; Panagiotopoulos, Athanassios; Debenedetti, Pablo
Abstract:
This dataset contains all data related to the publication "Signatures of a liquid-liquid transition in an ab initio deep neural network model for water", by Gartner et al., 2020. In this work, we used neural networks to generate a computational model for water using high-accuracy quantum chemistry calculations. Then, we used advanced molecular simulations to demonstrate evidence that suggests this model exhibits a liquid-liquid transition, a phenomenon that can explain many of water's anomalous properties. This dataset contains links to all software used, all data generated as part of this work, as well as scripts to generate and analyze all data and generate the plots reported in the publication.
Cara L. Buck; Jonathan D. Cohen; Field, Brent; Daniel Kahneman; Samuel M. McClure; Leigh E. Nystrom
Abstract:
Studies of subjective well-being have conventionally relied upon self-report, which directs subjects’ attention to their emotional experiences. This method presumes that attention itself does not influence emotional processes, which could bias sampling. We tested whether attention influences experienced utility (the moment-by-moment experience of pleasure) by using functional magnetic resonance imaging (fMRI) to measure the activity of brain systems thought to represent hedonic value while manipulating attentional load. Subjects received appetitive or aversive solutions orally while alternatively executing a low or high attentional load task. Brain regions associated with hedonic processing, including the ventral striatum, showed a response to both juice and quinine. This response decreased during the high-load task relative to the low-load task. Thus, attentional allocation may influence experienced utility by modulating (either directly or indirectly) the activity of brain mechanisms thought to represent hedonic value.
Link, A. James; Carson, Drew V.; So, Larry; Cheung-Lee, Wai Ling
Abstract:
This entry encompasses the raw NMR spectra used to determine the structure of the lasso peptide achromonodin-1. Within one file are included the five following spectra: COSY, TOCSY, NOESY (150 ms mixing time), NOESY (700 ms mixing time), and C,H HSQC. The file requires Mestrenova software to read. These spectra were used to develop the 3D structure models of achromonodin-1 that are deposited at the protein data bank (PDB) as entry 8SVB.
Caspary, Kyle J.; Choi, Dahan; Ebrahimi, Fatima; Gilson, Erik P.; Goodman, Jeremy; Ji, Hantao
Abstract:
The effects of axial boundary conductivity on the formation and stability of a magnetized free Stewartson-Shercliff layer (SSL) in a short Taylor-Couette device are reported. As the axial field increases with insulating endcaps, hydrodynamic Kelvin-Helmholtz-type instabilities set in at the SSLs of the conducting fluid, resulting in a much reduced flow shear. With conducting endcaps, SSLs respond to an axial field weaker by the square root of the conductivity ratio of endcaps to fluid. Flow shear continuously builds up as the axial field increases despite the local violation of the Rayleigh criterion, leading to a large number of hydrodynamically unstable modes. Numerical simulations of both the mean flow and the instabilities are in agreement with the experimental results.