The MAST-U fusion plasma research device, the upgrade to the Mega Amp Spherical Tokamak, has recently completed its first campaign of physics operation. MAST-U operated with Ohmic, or one or two neutral beams for heating, at 400-800 kA plasma current, in conventional or “SuperX” divertor configurations. Equilibrium reconstructions provide key plasma physics parameters vs. time for each discharge, and diagrams are produced which show where the prevalence of operation occurred as well as the limits in various operational spaces. When compared to stability limits, the operation of MAST-U so far has generally stayed out of the low q, low density instability region, and below the high density Greenwald limit, high beta global stability limits, and high elongation vertical stability limit. MAST-U still has the potential to reach higher elongation, which could benefit the plasma performance. Despite the majority of operation happening below established stability limits, disruptions did occur in the flat-top phase of MAST-U plasmas. The reasons for these disruptions are highlighted, and possible strategies to avoid them and to extend the operational space of MAST-U in future campaigns are discussed.
The dynamic interplay between the core and the edge plasma has important consequences in the confinement and heating of fusion plasma. The transport of the Scrape-Off-Layer (SOL) plasma imposes boundary conditions on the core plasma, and neutral transport through the SOL influences the core plasma sourcing. In order to better study these effects in a self-consistent, time-dependent fashion with reasonable turn-around time, a reduced model is needed. In this paper we introduce the SOL Box Model, a reduced SOL model that calculates the plasma temperature and density in the SOL given the core-to-edge particle and power fluxes and recycling coefficients. The analytic nature of the Box Model allows one to readily incorporate SOL physics in time-dependent transport solvers for pulse design applications in the control room. Here we demonstrate such a coupling with the core transport solver TRANSP and compare the results with density and temperature measurements, obtained through Thomson scattering and Langmuir probes, of an NSTX discharge. Implications for future interpretive and predictive simulations are discussed.
The data set consists of the figures in a manuscript titled Thermal ion kinetic effects and Landau damping in fishbone modes, and plotting script used for figure generation. There are 16 figures with captions.
A new model for electron temperature gradient (ETG) modes is developed as a component of the Multi-Mode anomalous transport module [T. Rafiq \textit{et al.,} Phys Plasmas \textbf{20}, 032506 (2013)] to predict a time dependent electron temperature profile in conventional and low aspect ratio tokamaks. This model is based on two-fluid equations that govern the dynamics of low-frequency short- and long-wavelength electromagnetic toroidal ETG driven drift modes. A low collisionality NSTX discharge is used to scan the plasma parameter dependence on the ETG real frequency, growth rate, and electron thermal diffusivity. Electron thermal transport is discovered in the deep core region where modes are more electromagnetic in nature. Several previously reported gyrokinetic trends are reproduced, including the dependencies of density gradients, magnetic shear, $\beta$ and gradient of $\beta$ $(\betap)$, collisionality, safety factor, and toroidicity, where $\beta$ is the ratio of plasma pressure to the magnetic pressure. The electron heat diffusivity associated with the ETG mode is discovered to be on a scale consistent with the experimental diffusivity determined by power balance analysis.
Sharma, A. Y.; Cole, M. D. J.; Görler, T.; Chen, Y.; Hatch, D. R.; Guttenfelder, W.; Hager, R.; Sturdevant, B. J.; Ku, S.; Chang, C. S.
Abstract:
Plasma shaping may have a stronger effect on global turbulence in tight-aspect-ratio tokamaks than in conventional-aspect-ratio tokamaks due to the higher toroidicity and more acute poloidal asymmetry in the magnetic field. In addition, previous local gyrokinetic studies have shown that it is necessary to include parallel magnetic field perturbations in order to accurately compute growth rates of electromagnetic modes in tight-aspect-ratio tokamaks. In this work, the effects of elongation and triangularity on global, ion-scale, linear electromagnetic modes are studied at NSTX aspect ratio and high plasma beta using the global gyrokinetic particle-in-cell code XGC. The effects of compressional magnetic perturbations are approximated via a well-known modification to the particle drifts that was developed for flux-tube simulations [N. Joiner et al., Phys. Plasmas 17, 072104 (2010)], without proof of its validity in a global simulation. Magnetic equilibria are re-constructed for each distinct plasma profile that is used. Coulomb collision effects are not considered. Within the limitations imposed by the present study, it is found that linear growth rates of electromagnetic modes (collisionless microtearing modes and kinetic ballooning modes) are significantly reduced by NSTX-like shaping. For example, growth rates of kinetic ballooning modes at high beta are reduced to the level of that of collisionless trapped electron modes.
The growth of magnetic islands in NSTX is modeled successfully, with the consideration of passing fast ions. It is shown that a good quantitative agreement between simulation and experimental measurement can be achieved when the uncompensated cross-field current induced by passing fast ions is included in the island growth model. The fast ion parameters,
along with other equilibrium parameters, are obtained self-consistently using the TRANSP code with the assumptions of the ‘kick’ model (Podestà et al 2017 Plasma Phys. Control. Fusion 59 095008). The results show that fast ions can contribute to overcoming the stabilizing effect of polarization current for magnetic island growth.
Non-axisymmetric magnetic fields arising in a tokamak either by external or internal perturbations can induce complex non-ideal MHD responses in their resonant surfaces while remaining ideally evolved elsewhere. This layer response can be characterized in a linear regime by a single parameter called the inner-layer Delta, which enables outer-layer matching and the prediction of torque balance to non-linear island regimes. Here, we follow strictly one of the most comprehensive analytic treatments including two-fluid and drift MHD effects and keep the fidelity of the formulation by incorporating the numerical method based on the Riccati transformation when quantifying the inner-layer Delta. The proposed scheme reproduces not only the predicted responses in essentially all asymptotic regimes but also with continuous transitions as well as improved accuracies. In particular, the Delta variations across the inertial regimes with viscous or semi-collisional effects have been further resolved, in comparison with additional analytic solutions. The results imply greater shielding of the electromagnetic torque at the layer than what would be expected by earlier work when the viscous or semi-collisional effects can compete against the inertial effects, and also due to the intermediate regulation by kinetic Alfven wave resonances as rotation slows down. These are important features that can alter the nonaxisymmetric plasma responses including the field penetration by external fields or island seeding process in rotating tokamak plasmas.
The engineering limits of plasma facing components (PFCs) constrain the allowable operational space of tokamaks. Poorly managed heat fluxes that push the PFCs beyond their limits not only degrade core plasma performance via elevated impurities, but can also result in PFC failure due to thermal stresses or melting. Simple axisymmetric assumptions fail to capture the complex interaction between 3D PFC geometry and 2D or 3D plasmas. This results in fusion systems that must either operate with increased risk or reduce PFC loads, potentially through lower core plasma performance, to maintain a nominal safety factor. High precision 3D heat flux predictions are necessary to accurately ascertain the state of a PFC given the evolution of the magnetic equilibrium. A new code, the Heat flux Engineering Analysis Toolkit (HEAT), has been developed to provide high precision 3D predictions and analysis for PFCs. HEAT couples many otherwise disparate computational tools together into a single open source python package. Magnetic equilibrium, engineering CAD, finite volume solvers, scrape off layer plasma physics, visualization, high performace computing, and more, are connected in a single web-based user interface. Linux users may use HEAT without any software prerequisites via an appImage. This manuscript introduces HEAT, discusses the software architecture, presents first HEAT results, and outlines physics modules in development.
Lampert,Mate; Diallo,Ahmed; Myra,James R.; Zweben, Stewart J.
Abstract:
Edge localized modes (ELMs) are routinely observed in H-mode plasma regimes of the National Spherical Torus Experiment (NSTX). Due to the explosive nature of the instability, only diagnostics with high temporal and spatial resolution could provide a detailed insight into the dynamics associated with the ELMs. Gas-puff imaging (GPI) at NSTX provides 2D measurements of the magnetic field aligned fluctuations (e.g. ELM filaments) in the scrape-off layer and the at the plasma edge with 2.5 us temporal and 10 mm optical resolution.A novel analysis technique was developed to estimate the frame-by-frame velocities and the spatial parameters of the dominant structures associated with the ELMs. The analysis was applied to single ELM events to characterize the ELM crash dynamics, and then extended to a database of 169 ELM events.Statistical analysis was performed in order to find the characterizing dynamics of the ELM crash. The results show that on average an ELM crash consists of a filament with a circular cross-section which is propelled outwards with a characterizing peak radial velocity of ~3.3 km/s. The radial velocity was found to be linearly dependent on the distance of the filament from the separatrix, which has never been seen before. The ELM filament is characterized by propagation in the ion-diamagnetic direction poloidally with a peak velocity of 11.4 km/s. The ELM crash lasts for approximately 100us until the radial propulsion settles back to the pre-ELM level. The experimental findings were compared with analytical theory. Two possible mechanisms were identified for explaining the observations: the curvature interchange model and the current-filament interaction model.
A matrix inversion technique is derived to calculate local ion temperature from line-integrated measurements of an extended emission source in an axisymmetric plasma which exactly corrects for both toroidal velocity and radial velocity components. Local emissivity and toroidal velocity can be directly recovered from line-integrated spectroscopic measurements, but an independent measurement of the radial velocity is necessary to complete the temperature inversion. The extension of this technique to handle the radial velocity is relevant for magnetic reconnection and merging compression devices where temperature inversion from spectroscopic measurements is desired. A simulation demonstrates the effects of radial velocity on the determination of ion temperature.