We discuss a novel diagnostic allowing direct measurements of the local electric field in the edge region in NSTX/NSTX-U. This laser based diagnostic's principle consists of depleting the naturally populated $n=3$ level to a Rydberg state --sensitive to electric fields-- that will result in a suppression of part of the $D_{\alpha}$ emission. We refer to this approach as Laser-Induced Rydberg Spectroscopy (LIRyS). It is shown that the local electric field can be measured through the Stark induced resonances observed as dips in the $D_\alpha$ emission. Using forward-modeling of simulated absorption spectra, we show precisions reaching \SI{\pm 2}{\kilo\volt\per\meter} in regions with a local electric field of \SI{15}{\kilo\volt\per\meter}.
Z. R. Wang; A. H. Glasser; D. Brennan; Y. Q. Liu; J-K. Park
Abstract:
The method of solving linear resistive plasma response, based on the asymptotic matching approach, is developed for full toroidal tokamaks by upgrading the Resistive DCON code [A.H. Glasser, Z.R. Wang and J.-K. Park, Physics of Plasmas, \textbf{23}, 112506 (2016)]. The derived matching matrix, asymptotically matching the outer and inner regions, indicates that the applied three dimension (3-D) magnetic perturbations contribute additional small solutions at each resonant surface due to the toroidal coupling of poloidal modes. In contrast, the resonant harmonic only affects the corresponding resonant surface in the cylindrical plasma. Since the solution of ideal outer region is critical to the asymptotic matching and is challenging to be solved in the toroidal geometry due to the singular power series solution at the resonant surfaces, systematic verification of the outer region $\Delta^\prime$ matrix is made by reproducing the well known analytical $\Delta^{\prime}$ result in [H.P. Furth, P.H. Rutherford and H. Selberg, The Physics of Fluids, \textbf{16}, 1054-1063 (1073)] as well as by making a quantitative benchmark with the PEST3 code [A. Pletzer and R.L. Dewar, J. Plasma Physics, \textbf{45}, 427-451 (1991)]. Finally, the reconstructed numerical solution of resistive plasma response from the toroidal matching matrix is presented. Comparing with the ideal plasma response, the global structure of the response can be affected by the small finite island at the resonant surfaces.
The Electromagnetic Particle Injector (EPI) concept is advanced through the simulation of ablatant deposition into ITER H-mode discharges with calculations showing penetration past the H-mode pedestal for a range of injection velocities and granule sizes concurrent with the requirements of disruption mitigation. As discharge stored energy increases in future fusion devices such as ITER, control and handling of disruption events becomes a critical issue. An unmitigated disruption could lead to failure of the plasma facing components resulting in financially and politically costly repairs. Methods to facilitate the quench of an unstable high current discharge are required. With the onset warning time for some ITER disruption events estimated to be less than 10 ms, a disruption mitigation system needs to be considered which operates at injection speeds greater than gaseous sound speeds. Such an actuator could then serve as a means to augment presently planned pneumatic injection systems. The EPI uses a rail gun concept whereby a radiative payload is delivered into the discharge by means of the JxB forces generated by an external current pulse, allowing for injection velocities in excess of 1 km/s. The present status of the EPI project is outlined, including the addition of boost magnetic coils. These coils augment the self-generated rail gun magnetic field and thus provide a more efficient acceleration of the payload. The coils and the holder designed to constrain them have been modelled with the ANSYS code to ensure structural integrity through the range of operational coil cu
Lunsford, R.; Bortolon, A.; Roquemore, A.L.; Mansfield, D.K.; Jaworski, M.A.; Kaita, R.; Maingi, R.; Nagy, A.
Abstract:
By employing a neutral gas shielding (NGS) model to characterize impurity granule
injection the pedestal atomic deposition for three different species of granule:
lithium, boron, and carbon are determined. Utilizing the duration of ablation
events recorded on experiments performed at DIII-D to calibrate the NGS model we
are able to quantify the ablation rate and mass deposition location with respect
to the plasma density profile. The species specific granule shielding constant
is then used to model granule ablation within NSTX-U discharges. Simulations of
300, 500 and 700 micron diameter granules injected at 50 m/sec are presented for
NSTX-U L-mode type plasmas as well as H-mode discharges with low natural ELM
frequencies. Additionally, ablation calculations of 500 micron granules of each
species are presented at velocities ranging from 50 � 150 m/sec. In H-mode type
discharges these simulations show that the majority of the injected granule is
ablated within or just past the steep gradient region of the discharge. At this
radial position, the perturbation to the background plasma generated by the ablating
granule can lead to conditions advantageous for the rapid triggering of an ELM crash
event.
Stotler, D.P.; Lang, J.; Chang, C.S.; Churchill, R.M.; Ku, S.-H.
Abstract:
The effects of recycled neutral atoms on tokamak ion temperature
gradient (ITG) driven turbulence have been investigated in a steep
edge pedestal, magnetic separatrix configuration, with the full-f
edge gryokinetic code XGC1. Ion temperature gradient turbulence is
the most fundamental and robust edge plasma instability, having a long
radial correlation length and an ability to impact other forms of
pedestal turbulence. The neutral atoms enhance the ITG turbulence,
first, by increasing the ion temperature gradient in the pedestal via
the cooling effects of charge exchange and, second, by a relative
reduction in the ExB shearing rate.
Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher qmin (>1.5) values, qmin being the minimum of safety factor profile. In the nonlinear regime,
the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non- resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.
The growth of magnetic islands in NSTX is modeled successfully, with the consideration of passing fast ions. It is shown that a good quantitative agreement between simulation and experimental measurement can be achieved when the uncompensated cross-field current induced by passing fast ions is included in the island growth model. The fast ion parameters,
along with other equilibrium parameters, are obtained self-consistently using the TRANSP code with the assumptions of the ‘kick’ model (Podestà et al 2017 Plasma Phys. Control. Fusion 59 095008). The results show that fast ions can contribute to overcoming the stabilizing effect of polarization current for magnetic island growth.
Results of 3D nonlinear simulations of neutral-beam-driven compressional Alfven eigenmodes (CAEs) in the National Spherical Torus Experiment (NSTX) are presented. Hybrid MHD-particle simulations for the H-mode NSTX discharge (shot 141398) using the HYM code show unstable CAE modes for a range of toroidal mode numbers, n=4-9, and frequencies below the ion cyclotron frequency. It is found that the essential feature of CAEs is their coupling to kinetic Alfven wave (KAW) that occurs on the high-field side at the Alfven resonance location. High-frequency Alfven eigenmodes are frequently observed in beam-heated NSTX plasmas, and have been linked to flattening of the electron temperature profiles at high beam power. Coupling between CAE and KAW suggests an energy channeling mechanism to explain these observations, in which beam-driven CAEs dissipate their energy at the resonance location,
therefore significantly modifying the energy deposition profile. Nonlinear simulations demonstrate that CAEs can channel the energy of the beam ions from the injection region near the magnetic axis to the location of the resonant mode conversion at the edge of the beam density profile. A set of nonlinear simulations show that the CAE instability saturates due to nonlinear particle trapping, and a large fraction of beam energy can be transferred to several unstable CAEs of relatively large amplitudes and absorbed at the resonant location. Absorption rate shows a strong scaling with the beam power.