Stellarators offer a promising path towards fusion reactors, but their design and construction are complicated by stringent tolerance requirements on highly complex 3D coils. A potential way to simplify the engineering requirements for stellarators is to use simple planar toroidal field coils along with permanent magnet arrays to generate shaping fields. In order to ensure sufficient field accuracy while minimizing engineering complexity and system cost, new techniques are required to correct the field produced by the permanent magnet arrays to within requirements set by plasma physics. This work describes a novel correction method developed for this purpose. This analysis is applied to the design of a quasi-axisymmetric stellarator that employs a combination of permanent magnets and planar toroidal field coils to generate its magnetic field. Analysis techniques and initial results using the method for error correction on a proposed permanent magnet stellarator are shown, and it is demonstrated that the method successfully meets the design requirements of the project.
Mondal, Shanka Subhra; Webb, Taylor; Cohen, Jonathan
Abstract:
A dataset of Raven’s Progressive Matrices (RPM)-like problems using realistically rendered
3D shapes, based on source code from CLEVR (a popular visual-question-answering dataset) (Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2901-2910)).
This dataset encompasses two distinct sets of data analyzed in the study, namely Asian American Scholar Forum survey data and Microsoft Academic Graph bibleometrics data:
Yu Xie, Xihong Lin, Ju Li, Qian He, Junming Huang, Caught in the Crossfire: Fears of Chinese-American Scientists, Proceedings of the National Academy of Sciences, in press (2023).
This dataset contains example input files, training data sets and potential files related to the publication "First-principles-based Machine Learning Models for Phase Behavior and Transport Properties of CO2." by Mathur et al (2023). In this work, we developed machine learning models for CO2 based on different exchange-correlation DFT functionals. We assessed their performance on liquid densities, vapor-liquid equilibrium and transport properties.
This item provides access to all configurations of single-chain nanoparticles analyzed in the manuscript "Sequence Patterning, Morphology, and Dispersity in Single-Chain Nanoparticles: Insights from Simulation and Machine Learning" by Roshan A. Patel, Sophia Colmenares, and Michael A. Webb (DOI: 10.1021/acspolymersau.3c00007). The single-chain nanoparticles derive from 320 unique precursor chains that are distinguished by the fraction of linker beads that decorate a fixed-length polymer backbone and the distribution or blockiness of those linker beads. The data is provided in the form of serialized object using the `pickle' python module. The data was compiled using Python version 3.8.8 and Clang 10.0.0. The Python object loaded from the .pkl file is a nested list, with the first dimension having 7,680 entries for the 7,680 unique single-chain nanoparticles produced in the aforementioned paper. Each of those 7,680 entries is itself a list with 20 entries, representing the 20 different simulation snapshots of the given single-chain nanoparticle. Each of the 20 entries is another list with two entries, with the first being a numpy.ndarray containing the x,y,z coordinates of all the beads comprising the single-chain nanoparticle and the second being a numpy.ndarray with a numerical encoding to indicate whether the beads are backbone (indicated as '0') or linker beads (indicated as '1'). Altogether, this provides 153,600 configurations of single-chain nanoparticles.
Piaggi, Pablo M; Gartner, Thomas E; Car, Roberto; Debenedetti, Pablo G
Abstract:
The possible existence of a liquid-liquid critical point in deeply supercooled water has been a subject of debate in part due to the challenges associated with providing definitive experimental evidence. Pioneering work by Mishima and Stanley [Nature 392, 164 (1998) and Phys.~Rev.~Lett. 85, 334 (2000)] sought to shed light on this problem by studying the melting curves of different ice polymorphs and their metastable continuation in the vicinity of the expected location of the liquid-liquid transition and its associated critical point. Based on the continuous or discontinuous changes in slope of the melting curves, Mishima suggested that the liquid-liquid critical point lies between the melting curves of ice III and ice V. Here, we explore this conjecture using molecular dynamics simulations with a purely-predictive machine learning model based on ab initio quantum-mechanical calculations. We study the melting curves of ices III, IV, V, VI, and XIII using this model and find that the melting lines of all the studied ice polymorphs are supercritical and do not intersect the liquid-liquid transition locus. We also find a pronounced, yet continuous, change in slope of the melting lines upon crossing of the locus of maximum compressibility of the liquid. Finally, we analyze critically the literature in light of our findings, and conclude that the scenario in which melting curves are supercritical is favored by the most recent computational and experimental evidence. Thus, although the preponderance of experimental and computational evidence is consistent with the existence of a second critical point in water, the behavior of the melting lines of ice polymorphs does not provide strong evidence in support of this viewpoint, according to our calculations.
Zhu, Hongxuan; Stoltzfus-Dueck, T; Hager, R; Ku, S; Chang, C. S.
Abstract:
Ion orbit loss has been used to model the formation of a strong negative radial electric field Er in the tokamak edge, as well as edge momentum transport and toroidal rotation. To quantitatively measure ion orbit loss, an orbit-flux formulation has been developed and numerically applied to the gyrokinetic particle-in-cell code XGC. We study collisional ion orbit loss in an axisymmetric DIII-D L-mode plasma using gyrokinetic ions and drift-kinetic electrons. Numerical simulations, where the plasma density and temperature profiles are maintained through neutral ionization and heating, show the formation of a quasisteady negative Er in the edge. We have measured a radially outgoing ion gyrocenter flux due to collisional scattering of ions into the loss orbits, which is balanced by the radially incoming ion gyrocenter flux from confined orbits on the collisional time scale. This suggests that collisional ion orbit loss can shift Er in the negative direction compared to that in plasmas without orbit loss. It is also found that collisional ion orbit loss can contribute to a radially outgoing (counter-current) toroidal-angular-momentum flux, which is not balanced by the toroidal-angular-momentum flux carried by ions on the confined orbits. Therefore, the edge toroidal rotation shifts in the co-current direction on the collisional time scale.
Hager, Robert; Ku, Seung-Hoe; Sharma, Amil Y.; Churchill, Randy Michael; Chang, C. S.; Scheinberg, Aaron
Abstract:
The simplified delta-f mixed-variable/pull-back electromagnetic simulation algorithm implemented in XGC for core plasma simulations by Cole et al. [Phys. Plasmas 28, 034501 (2021)] has been generalized to a total-f electromagnetic algorithm that can include, for the first time, the boundary plasma in diverted magnetic geometry with neutral particle recycling, turbulence and neoclassical physics.
The delta-f mixed-variable/pull-back electromagnetic implementation is based on the pioneering work by Kleiber and Mischenko et al. [Kleiber et al., Phys. Plasmas 23, 032501 (2016); Mishchenko et al., Comput. Phys. Commun. 238, 194 (2019)].
An electromagnetic demonstration simulation is performed in a DIII-D-like, H-mode boundary plasma, including a corresponding comparative electrostatic simulation, which confirms that the electromagnetic simulation is necessary for a higher fidelity understanding of the electron particle and heat transport even at the low-beta pedestal foot in the vicinity of the magnetic separatrix.
In this publication we provide the LAMMPS example files to reproduce simulations for the manuscript "A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water"
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
Coronal mass ejections (CMEs) are some of the most energetic and violent events in our solar system. The prediction and understanding of CMEs is of particular importance due to the impact that they can have on Earth-based satellite systems, and in extreme cases, ground-based electronics. CMEs often occur when long-lived magnetic flux ropes (MFRs) anchored to the solar surface destabilize and erupt away from the Sun. One potential cause for these eruptions is an ideal magnetohydrodynamic (MHD) instability such as the kink or torus instability. Previous experiments on the Magnetic Reconnection eXperiment (MRX) revealed a class of MFRs that were torus-unstable but kink-stable, which failed to erupt. These “failed-tori” went through a process similar to Taylor relaxation where the toroidal current was redistributed before the eruption ultimately failed. We have investigated this behavior through additional diagnostics that measure the current distribution at the foot points and the energy distribution before and after an event. These measurements indicate that ideal MHD effects are sufficient to explain the energy distribution changes during failed torus events. This excludes Taylor relaxation as a possible mechanism of current redistribution during an event. A new model that only requires non-ideal effects in a thin layer above the electrodes is presented to explain the observed phenomena. This work broadens our understanding of the stability of MFRs and the mechanism behind the failed torus through the improved prediction of the torus instability and through new diagnostics to measure the energy inventory and current profile at the foot points.
Large-eddy simulations were employed over half-ice and half-water surfaces, with varying surface temperatures, wind speeds, directions, as to test if the atmospheric interaction with the heterogeneous surface can be predicted via a heterogeneity Richardson number. This dataset was used to determine that surface heat fluxes over ice, water, and the aggregate surface seem to be captured reasonably well by the wind direction and the heterogeneity Richardson number, but the mean wind and turbulent kinetic energy (TKE) profiles were not, suggesting that not only the difference in stability between the two surface, but also the individual stabilities over each surface influence the dynamics.
Trinczek, Silvia; Parra, Felix I.; Catto, Peter J.; Calvo, Iván; Landreman, Matt
Abstract:
We present a new neoclassical transport model for large aspect ratio tokamaks where the gradient scale lengths are of the size of the ion poloidal gyroradius. Previous work on neoclassical transport across transport barriers assumed large density and potential gradients but a small temperature gradient, or neglected the gradient of the mean parallel flow. Using large aspect ratio and low collisionality expansions, we relax these restrictive assumptions. We define a new set of variables based on conserved quantities, which simplifies the drift kinetic equation whilst keeping strong gradients, and derive equations describing the transport of particles, parallel momentum and energy by ions in the banana regime. The poloidally varying parts of density and electric potential are included. Studying contributions from both passing and trapped particles, we show that the resulting transport is dominated by trapped particles. We find that a non-zero neoclassical particle flux requires parallel momentum input which could be provided through interaction with turbulence or impurities. We derive upper and lower bounds for the energy flux across a transport barrier in both temperature and density and present example profiles and fluxes.
The MAST-U fusion plasma research device, the upgrade to the Mega Amp Spherical Tokamak, has recently completed its first campaign of physics operation. MAST-U operated with Ohmic, or one or two neutral beams for heating, at 400-800 kA plasma current, in conventional or “SuperX” divertor configurations. Equilibrium reconstructions provide key plasma physics parameters vs. time for each discharge, and diagrams are produced which show where the prevalence of operation occurred as well as the limits in various operational spaces. When compared to stability limits, the operation of MAST-U so far has generally stayed out of the low q, low density instability region, and below the high density Greenwald limit, high beta global stability limits, and high elongation vertical stability limit. MAST-U still has the potential to reach higher elongation, which could benefit the plasma performance. Despite the majority of operation happening below established stability limits, disruptions did occur in the flat-top phase of MAST-U plasmas. The reasons for these disruptions are highlighted, and possible strategies to avoid them and to extend the operational space of MAST-U in future campaigns are discussed.
The dynamic interplay between the core and the edge plasma has important consequences in the confinement and heating of fusion plasma. The transport of the Scrape-Off-Layer (SOL) plasma imposes boundary conditions on the core plasma, and neutral transport through the SOL influences the core plasma sourcing. In order to better study these effects in a self-consistent, time-dependent fashion with reasonable turn-around time, a reduced model is needed. In this paper we introduce the SOL Box Model, a reduced SOL model that calculates the plasma temperature and density in the SOL given the core-to-edge particle and power fluxes and recycling coefficients. The analytic nature of the Box Model allows one to readily incorporate SOL physics in time-dependent transport solvers for pulse design applications in the control room. Here we demonstrate such a coupling with the core transport solver TRANSP and compare the results with density and temperature measurements, obtained through Thomson scattering and Langmuir probes, of an NSTX discharge. Implications for future interpretive and predictive simulations are discussed.
Griffies, Stephen M; Beadling, Rebecca L; Krasting, John P; Hurlin, William J
Abstract:
This output was produced in coordination with the Southern Ocean Freshwater release model experiments Initiative (SOFIA) and is the Tier 1 experiment where freshwater is delivered in a spatially and temporally uniform pattern at the surface of the ocean at sea surface temperature in a 1-degree latitude band extending from Antarctica’s coastline. The total additional freshwater flux imposed as a monthly freshwater flux entering the ocean is 0.1 Sv. Users are referred to the methods section of Beadling et al. (2022) for additional details on the meltwater implementation in CM4 and ESM4. The datasets in this collection contain model output from the coupled global climate model, CM4, and Earth System Model, ESM4, both developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). The ocean_monthly_z and ocean_annual_z output are provided as z depth levels in meters as opposed to the models native hybrid vertical ocean coordinate which consists of z* (quasi-geopotential) coordinates in the upper ocean through the mixed layer, transitioning to isopycnal (referenced to 2000 dbar) in the ocean interior. Please see README for further details.
Notterman, Daniel A; Schneper, Lisa M; Drake, Amanda; Piyasena, Chinthika
Abstract:
This entry contains the data used in the PLOS ONE publication entitled, "Characteristics of salivary telomere length shortening in preterm infants" by Schneper et al. The objective of the study was to examine the association between gestational age, telomere length (TL) and rate of shortening in newborns. Genomic DNA was isolated from buccal samples of 39 term infants at birth and one year and 32 preterm infants at birth, term-adjusted age (40 weeks post-conception) and age one-year corrected for gestational duration. Telomere length was measured by quantitative real-time PCR. Demographic and clinical data were collected during clinic or research visits and from hospital records. Socioeconomic status was estimated using the deprivation category (DEPCAT) scores derived from the Carstairs score of the subject's postal code.