« Previous |
11 - 17 of 17
|
Next »
Number of results to display per page
Search Results
12. Modeling of a Laser-Induced Rydberg Spectroscopy diagnostic for Direct Measurement of the Local Electric Field in the Edge Region of NSTX/NSTX-U
- Author(s):
- Reymond, L.; Diallo, A.; Vekselman, V.
- Abstract:
- We discuss a novel diagnostic allowing direct measurements of the local electric field in the edge region in NSTX/NSTX-U. This laser based diagnostic's principle consists of depleting the naturally populated $n=3$ level to a Rydberg state --sensitive to electric fields-- that will result in a suppression of part of the $D_{\alpha}$ emission. We refer to this approach as Laser-Induced Rydberg Spectroscopy (LIRyS). It is shown that the local electric field can be measured through the Stark induced resonances observed as dips in the $D_\alpha$ emission. Using forward-modeling of simulated absorption spectra, we show precisions reaching \SI{\pm 2}{\kilo\volt\per\meter} in regions with a local electric field of \SI{15}{\kilo\volt\per\meter}.
- Type:
- Dataset
- Issue Date:
- July 2018
13. Plasma boundary shape control and real-time equilibrium reconstruction on NSTX-U
- Author(s):
- Boyer, M.; Battaglia, D.; Mueller, D.; Eidietis, N.; Erickson, K.; Ferron, J.; Gates, D.; Gerhardt, S.; Johnson, R.; Kolemen, E.; Menard, J.; Myers, C.; Sabbagh, S.; Scotti, F.; Vail, P.
- Abstract:
- The upgrade to the National Spherical Torus eXperiment (NSTX-U) included two main improvements: a larger center-stack, enabling higher toroidal field and longer pulse duration, and the addition of three new tangentially aimed neutral beam sources, which increase available heating and current drive, and allow for flexibility in shaping power, torque, current, and particle deposition profiles. To best use these new capabilities and meet the high-performance operational goals of NSTX-U, major upgrades to the NSTX-U Control System (NCS) hardware and software have been made. Several control algorithms, including those used for real-time equilibrium reconstruction and shape control, have been upgraded to improve and extend plasma control capabilities. As part of the commissioning phase of first plasma operations, the shape control system was tuned to control the boundary in both inner-wall limited and diverted discharges. It has been used to accurately track the requested evolution of the boundary (including the size of the inner gap between the plasma and central solenoid, which is a challenge for the ST configuration), X-point locations, and strike point locations, enabling repeatable discharge evolutions for scenario development and diagnostic commissioning.
- Type:
- Dataset
- Issue Date:
- March 2018
14. Quantitative imaging of carbon dimer precursor for nanomaterial synthesis in the carbon arc
- Author(s):
- Vekselman, V.; Khrabry, A.; Kaganovich, I.; Stratton, B.; Selinsky, R. S.; Raitses, Y.
- Abstract:
- Delineating the dominant processes responsible for nanomaterial synthesis in a plasma environment requires measurements of the precursor species contributing to the growth of nanostructures. We performed comprehensive measurements of spatial and temporal profiles of carbon dimers in sub-atmospheric-pressure carbon arc by laser-induced fluorescence. Measured spatial profiles of carbon dimers coincide with the growth region of carbon nanotubes (Fang et al 2016 Carbon 107 273-80) and vary depending on the arc operation mode, which is determined by the discharge current and the ablation rate of the graphite anode. The carbon dimer density profile exhibits large spatial and time variations due to motion of the arc core. A comparison of the experimental data with the 2D simulation results of self-consistent arc modeling shows a good agreement. The model predicts well the main processes determining spatial profiles of carbon dimers.
- Type:
- Dataset
- Issue Date:
- January 2018
15. Regional hydroclimatic variability due to contemporary deforestation in southern Amazonia and associated boundary layer characteristics
- Author(s):
- Khanna, Jaya; Medvigy, David; Fisch, Gilberto; Neves, Theomar Trindade de Araújo Tiburtino
- Abstract:
- Amazonian deforestation causes systematic changes in regional dry season precipitation. Some of these changes at contemporary large scales (a few hundreds of kilometers) of deforestation have been associated with a ‘dynamical mesoscale circulation’, induced by the replacement of rough forest with smooth pasture. In terms of decadal averages, this dynamical mechanism yields increased precipitation in downwind regions and decreased precipitation in upwind regions of deforested areas. Daily, seasonal, and interannual variations in this phenomenon may exist, but have not yet been identified or explained. This study uses observations and numerical simulations to develop relationships between the dynamical mechanism and the local- and continental-scale atmospheric conditions across a range of time scales. It is found that the strength of the dynamical mechanism is primarily controlled by the regional-scale thermal and dynamical conditions of the boundary layer, and not by the continental- and global-scale atmospheric state. Lifting condensation level and wind speed within the boundary layer have large and positive correlations with the strength of the dynamical mechanism. The strength of these relationships depends on time scale and is strongest over the seasonal cycle. Overall, the dynamical mechanism is found to be strongest during times when the atmosphere is relatively stable. Hence, for contemporary large scales of deforestation this phenomenon is found to be the prevalent convective triggering mechanism during the dry and parts of transition seasons (especially during the dry-to-wet transition), significantly affecting the hydroclimate during this period.
- Type:
- Dataset and Software
- Issue Date:
- 2018
16. Regulation of Harvester Ant Foraging as a Closed-Loop Excitable System
- Abstract:
- Ant colonies regulate activity in response to changing conditions without using centralized control. Harvester ant colonies forage in the desert for seeds, and their regulation of foraging manages a tradeoff between spending and obtaining water. Foragers lose water while outside in the dry air, but the colony obtains water by metabolizing the fats in the seeds they eat. Previous work shows that the rate at which an outgoing forager leaves the nest depends on its recent experience of brief antennal contact with returning foragers that carry a seed. We examine how this process can yield foraging rates that are robust to uncertainty and responsive to temperature and humidity across minutes to hour-long timescales. To explore possible mechanisms, we develop a low-dimensional analytical model with a small number of parameters that captures observed foraging behavior. The model uses excitability dynamics to represent response to interactions inside the nest and a random delay distribution to represent foraging time outside the nest. We show how feedback of outgoing foragers returning to the nest stabilizes the incoming and outgoing foraging rates to a common value determined by the ``volatility’’ of available foragers. The model exhibits a critical volatility above which there is sustained foraging at a constant rate and below which there is cessation of foraging. To explain how the foraging rates of colonies adjust to temperature and humidity, we propose a mechanism that relies on foragers modifying their volatility after they leave the nest and get exposed to the environment. Our study highlights the importance of feedback in the regulation of foraging activity and points to modulation of volatility as a key to explaining differences in foraging activity in response to conditions and across colonies. Our results present opportunities for generalization to other contexts and systems with excitability and feedback across multiple timescales.
- Type:
- collection and Dataset
17. Whistler wave generation by anisotropic tail electrons during asymmetric magnetic reconnection in space and laboratory
- Author(s):
- Yoo, Jongsoo; Jara-almonte, J.; Yerger, Evan; Wang, Shan; Qian, Tony; Le, Ari; Ji, Hantao; Yamada, Masaaki; Fox, William; Kim, Eun-Hwa; Chen, Li-Jen; Gershman, Daniel
- Abstract:
- Whistler wave generation near the magnetospheric separatrix during reconnection at the dayside magnetopause is studied with data from the Magnetospheric Multiscale (MMS) mission. The dispersion relation of the whistler mode is measured for the first time near the reconnection region in space, which shows that whistler waves propagate nearly parallel to the magnetic field line. A linear analysis indicates that the whistler waves are generated by temperature anisotropy in the electron tail population. This is caused by loss of electrons with a high velocity parallel to the magnetic field to the exhaust region. There is a positive correlation between activities of whistler waves and the lower-hybrid drift instability (LHDI) both in laboratory and space, indicating the enhanced transport by LHDI may be responsible for the loss of electrons with a high parallel velocity.
- Type:
- Dataset
- Issue Date:
- August 2018