Physical and biogeochemical variables from the NOAA-GFDL Earth System Model 2M experiments, and previously published observation-based datasets, used for the study 'Hydrological cycle amplification reshapes warming-driven oxygen loss in Atlantic Ocean'.
In this publication we provide the LAMMPS example files to reproduce simulations for the manuscript "A Deep Potential model for liquid-vapor equilibrium and cavitation rates of water"
The materials include codes and example input / output files for Monte Carlo simulations of lattice chains in the grand canonical ensemble, for determining phase behavior, critical points, and formation of aggregates.
Large-eddy simulations were employed over half-ice and half-water surfaces, with varying surface temperatures, wind speeds, directions, as to test if the atmospheric interaction with the heterogeneous surface can be predicted via a heterogeneity Richardson number. This dataset was used to determine that surface heat fluxes over ice, water, and the aggregate surface seem to be captured reasonably well by the wind direction and the heterogeneity Richardson number, but the mean wind and turbulent kinetic energy (TKE) profiles were not, suggesting that not only the difference in stability between the two surface, but also the individual stabilities over each surface influence the dynamics.
Large-eddy simulations were employed over five different sea ice patterns, with a constant ice fraction, to test if the overlying atmospheric boundary layer (ABL) dynamics and thermodynamics differs. The results of these simulations were used to determine that there were differences in vertical heat flux, momentum flux, and horizontal wind speed, and that more surface information is needed to predict the ABL over the sea ice surface. To see what other surface information is needed, twenty-two landscape metrics were calculated over forty-four different maps at differing resolutions, using the FRAGSTATs program. The results of that analysis are available in a .csv file in this dataset.
This repository contains the raw photon-by-photon single-molecule FRET (smFRET) trajectories, SAXS data, and MD simulation trajectories, multi-sequence alignment, and gel images for the paper titled "Sub-Domain Dynamics Enables Chemical Chain Reactions in Nonribosomal Peptide Synthetases."
O'Neill, Eric; Lark, Tyler; Xie, Yanhua; Basso, Bruno
Abstract:
Collection of the underlying spatially explicit data for Available Land for Cellulosic Biofuel Production: A Supply Chain Centered Comparison. Includes raw biomass yield data and soil carbon sequestration potential data for three types of marginal land for the USA midwest at the field level including field areas. Collection also includes raw land rasters for the three types of marginal land, model parameters for the MILP model used in the study, and results used to generate the figures in the paper.
Griffies, Stephen M; Beadling, Rebecca L; Krasting, John P; Hurlin, William J
Abstract:
This output was produced in coordination with the Southern Ocean Freshwater release model experiments Initiative (SOFIA) and is the Tier 1 experiment where freshwater is delivered in a spatially and temporally uniform pattern at the surface of the ocean at sea surface temperature in a 1-degree latitude band extending from Antarctica’s coastline. The total additional freshwater flux imposed as a monthly freshwater flux entering the ocean is 0.1 Sv. Users are referred to the methods section of Beadling et al. (2022) for additional details on the meltwater implementation in CM4 and ESM4. The datasets in this collection contain model output from the coupled global climate model, CM4, and Earth System Model, ESM4, both developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). The ocean_monthly_z and ocean_annual_z output are provided as z depth levels in meters as opposed to the models native hybrid vertical ocean coordinate which consists of z* (quasi-geopotential) coordinates in the upper ocean through the mixed layer, transitioning to isopycnal (referenced to 2000 dbar) in the ocean interior. Please see README for further details.
Notterman, Daniel A; Schneper, Lisa M; Drake, Amanda; Piyasena, Chinthika
Abstract:
This entry contains the data used in the PLOS ONE publication entitled, "Characteristics of salivary telomere length shortening in preterm infants" by Schneper et al. The objective of the study was to examine the association between gestational age, telomere length (TL) and rate of shortening in newborns. Genomic DNA was isolated from buccal samples of 39 term infants at birth and one year and 32 preterm infants at birth, term-adjusted age (40 weeks post-conception) and age one-year corrected for gestational duration. Telomere length was measured by quantitative real-time PCR. Demographic and clinical data were collected during clinic or research visits and from hospital records. Socioeconomic status was estimated using the deprivation category (DEPCAT) scores derived from the Carstairs score of the subject's postal code.
Webb, Michael; Jacobs, William; An, Yaxin; Oliver, Wesley
Abstract:
This distribution compiles thermodynamic and (where available) dynamic properties of short protein sequences as obtained from coarse-grained molecular dynamics simulations. The dataset features 2114 protein sequences with sequence lengths ranging from N=20 up to N=50 amino acids. The simulation and analysis of these sequences is described in "Active learning of the thermodynamics--dynamics tradeoff in protein condensates'' by Yaxin An, Michael A. Webb*, and William M. Jacobs* (https://doi.org/10.48550/arXiv.2306.03696). Of the 2114 protein sequences, 80 are homomeric polypeptides (replicating a single amino acid for N = 20, 30, 40, and 50), 1266 are sourced from version 9.0 of the DisProt database, and the remaining 768 sequences are novel sequences generated during an active learning campaign described in the aforementioned manuscript. The simulations were performed using the LAMMPS molecular dynamics engine. The interactions used for simulation are obtained from R. M. Regy , J. Thompson , Y. C. Kim and J. Mittal , Improved coarse-grained model for studying sequence dependent phase separation of disordered proteins, Protein Sci., 2021, 1371 —1379. Properties included in this distribution include second virial coefficients, pressure-density data, expectation for phase behavior at 300 K, estimated condensed-phase densities at 300 K (if exist), and condensed-phase self-diffusion coefficients at 300 K (if exist).